BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8412094)

  • 1. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture.
    Mower WR; Baraff LJ; Sneyd J
    J Surg Res; 1993 Aug; 55(2):155-61. PubMed ID: 8412094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis.
    Merkx MA; van 't Veer M; Speelman L; Breeuwer M; Buth J; van de Vosse FN
    J Biomech; 2009 Oct; 42(14):2369-73. PubMed ID: 19665127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple geometric characteristics fail to reliably predict abdominal aortic aneurysm wall stresses.
    Hua J; Mower WR
    J Vasc Surg; 2001 Aug; 34(2):308-15. PubMed ID: 11496284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application.
    Vande Geest JP; Di Martino ES; Bohra A; Makaroun MS; Vorp DA
    Ann N Y Acad Sci; 2006 Nov; 1085():11-21. PubMed ID: 17182918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic effects on the formation and rupture of aneurysms.
    Ren JS
    Mol Cell Biomech; 2010 Dec; 7(4):213-24. PubMed ID: 21141675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical model of the rupture mechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth.
    Meng H; Feng Y; Woodward SH; Bendok BR; Hanel RA; Guterman LR; Hopkins LN
    Neurol Res; 2005 Jul; 27(5):459-65. PubMed ID: 15978170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The long-term relationship of wall stress to the natural history of abdominal aortic aneurysms (finite element analysis and other methods).
    Fillinger M
    Ann N Y Acad Sci; 2006 Nov; 1085():22-8. PubMed ID: 17182919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Rupture risk of abdominal aortic aneurysms. The role of computational mechanics].
    Giannoglou G; Giannakoulas G; Hatzitolios AI; Rudolf J
    Herz; 2008 Jul; 33(5):354-61. PubMed ID: 18773155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors promoting rupture of abdominal aortic aneurysms.
    Van Damme H; Sakalihasan N; Limet R
    Acta Chir Belg; 2005 Feb; 105(1):1-11. PubMed ID: 15790196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis.
    Pierrisnard L; Bohin F; Renault P; Barquins M
    J Prosthet Dent; 2002 Oct; 88(4):442-8. PubMed ID: 12447223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of saccular aneurysm hemodynamics: influence of morphology on rupture risk.
    Utter B; Rossmann JS
    J Biomech; 2007; 40(12):2716-22. PubMed ID: 17350027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy.
    Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA
    J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo mechanical properties of thoracic aortic aneurysmal wall estimated from in vitro biaxial tensile test.
    Fukui T; Matsumoto T; Tanaka T; Ohashi T; Kumagai K; Akimoto H; Tabayashi K; Sato M
    Biomed Mater Eng; 2005; 15(4):295-305. PubMed ID: 16010038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refinements in mathematical models to predict aneurysm growth and rupture.
    Berguer R; Bull JL; Khanafer K
    Ann N Y Acad Sci; 2006 Nov; 1085():110-6. PubMed ID: 17182927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm.
    Raghavan ML; Kratzberg J; Castro de Tolosa EM; Hanaoka MM; Walker P; da Silva ES
    J Biomech; 2006; 39(16):3010-6. PubMed ID: 16337949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The accuracy of thin-shell theory in estimation of aneurysm rupture.
    Zendehbudi GR; Kazemi A
    J Biomech; 2007; 40(14):3230-5. PubMed ID: 17568592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.