These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 8412303)

  • 1. Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment.
    Nicholson C
    J Neurosci Methods; 1993 Jul; 48(3):199-213. PubMed ID: 8412303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time Iontophoresis with Tetramethylammonium to Quantify Volume Fraction and Tortuosity of Brain Extracellular Space.
    Odackal J; Colbourn R; Odackal NJ; Tao L; Nicholson C; Hrabetova S
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of extracellular space using the method of TMA+ iontophoresis and the issue of TMA+ uptake.
    Nicholson C
    Can J Physiol Pharmacol; 1992; 70 Suppl():S314-22. PubMed ID: 1295682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and use of high-speed, concentric h+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording.
    Fedirko N; Svichar N; Chesler M
    J Neurophysiol; 2006 Aug; 96(2):919-24. PubMed ID: 16672303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission.
    Rice ME; Okada YC; Nicholson C
    J Neurophysiol; 1993 Nov; 70(5):2035-44. PubMed ID: 7507522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue.
    Haack N; Durry S; Kafitz KW; Chesler M; Rose R
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26381747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Issues involved in the transmission of chemical signals through the brain extracellular space.
    Nicholson C
    Acta Morphol Neerl Scand; 1988-1989; 26(2-3):69-80. PubMed ID: 2908164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip size of ion-exchanger based K+-selective microelectrodes. I. Effects on selectivity.
    Carlini WG; Ransom BR
    Can J Physiol Pharmacol; 1987 May; 65(5):889-93. PubMed ID: 3621051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of optimized Na+ and Cl- liquid membranes for use with extracellular, self-referencing microelectrodes.
    Messerli MA; Kurtz I; Smith PJ
    Anal Bioanal Chem; 2008 Mar; 390(5):1355-9. PubMed ID: 18193410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC.
    Hrabetová S; Masri D; Tao L; Xiao F; Nicholson C
    J Physiol; 2009 Aug; 587(Pt 16):4029-49. PubMed ID: 19546165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of magnetic resonance to measure molecular diffusion within the brain extracellular space.
    Kroenke CD; Neil JJ
    Neurochem Int; 2004 Sep; 45(4):561-8. PubMed ID: 15186923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion of molecules in brain extracellular space: theory and experiment.
    Nicholson C; Chen KC; Hrabĕtová S; Tao L
    Prog Brain Res; 2000; 125():129-54. PubMed ID: 11098654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved quantification of the dynamic extracellular space in the brain during short-lived event: methodology and simulations.
    Chen KC; Zhou Y; Zhao HH
    J Neurophysiol; 2019 May; 121(5):1718-1734. PubMed ID: 30786219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes of extracellular space volume and tortuosity in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis.
    Simonová Z; Svoboda J; Orkand P; Bernard CC; Lassmann H; Syková E
    Physiol Res; 1996; 45(1):11-22. PubMed ID: 8884919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion in brain extracellular space.
    Syková E; Nicholson C
    Physiol Rev; 2008 Oct; 88(4):1277-340. PubMed ID: 18923183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tip size of ion-exchanger based K+-selective microelectrodes. II. Effects on measurement of evoked [K+]0 transients.
    Ransom BR; Carlini WG; Yamate CL
    Can J Physiol Pharmacol; 1987 May; 65(5):894-7. PubMed ID: 3621052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat.
    Syková E; Svoboda J; Polák J; Chvátal A
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):301-11. PubMed ID: 8113325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing molecular probes for diffusion measurements in the brain.
    Kaur G; Hrabetova S; Guilfoyle DN; Nicholson C; Hrabe J
    J Neurosci Methods; 2008 Jun; 171(2):218-25. PubMed ID: 18466980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum.
    Vorísek I; Syková E
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):191-203. PubMed ID: 9040499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis.
    Lehmenkühler A; Syková E; Svoboda J; Zilles K; Nicholson C
    Neuroscience; 1993 Jul; 55(2):339-51. PubMed ID: 8377929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.