These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8412378)

  • 1. Effect of method and parameters of spectral analysis on selected indices of simulated Doppler spectra.
    Kaluzynski K; Palko T
    Med Biol Eng Comput; 1993 May; 31(3):249-56. PubMed ID: 8412378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Doppler signal analysis techniques for velocity waveform, turbulence and vortex measurement: a simulation study.
    Wang Y; Fish PJ
    Ultrasound Med Biol; 1996; 22(5):635-49. PubMed ID: 8865559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of short-time spectral parametric methods for reducing the variance of the Doppler ultrasound mean instantaneous frequency estimation.
    Sava H; Durand LG; Cloutier G
    Med Biol Eng Comput; 1999 May; 37(3):291-7. PubMed ID: 10505377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral broadening of clinical Doppler signals using FFT and autoregressive modelling.
    Keeton PI; Schlindwein FS
    Eur J Ultrasound; 1998 Aug; 7(3):209-18. PubMed ID: 9700218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the spectral broadening of simulated Doppler signals using FFT and AR modelling.
    Keeton PI; Schlindwein FS; Evans DH
    Ultrasound Med Biol; 1997; 23(7):1033-45. PubMed ID: 9330447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of time-frequency representation techniques to measure blood flow turbulence with pulsed-wave Doppler ultrasound.
    Cloutier G; Chen D; Durand LG
    Ultrasound Med Biol; 2001 Apr; 27(4):535-50. PubMed ID: 11368865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction for broadening in Doppler blood flow spectrum estimated using wavelet transform.
    Zhang Y; Xu L; Chen J; Ma H; Shi X
    Med Eng Phys; 2006 Jul; 28(6):596-603. PubMed ID: 16256404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The validity of Doppler-derived spectral analysis in the presence of multiple stenoses.
    Latino JM; Chleboun JO
    Aust N Z J Surg; 1994 May; 64(5):338-44. PubMed ID: 8179531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive approach to computing the spectrum and mean frequency of Doppler signals.
    Herment A; Giovannelli JF
    Ultrason Imaging; 1995 Jan; 17(1):1-26. PubMed ID: 7638930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of fast Fourier transformation and autoregressive modelling as a diagnostic tool in analysis of lower extremity venous signals.
    Kara S; Kemaloglu S; Erdogan N
    Comput Biol Med; 2006 May; 36(5):484-94. PubMed ID: 15922320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the autoregressive modeling and fast Fourier transformation in demonstrating Doppler spectral waveform changes in the early phase of atherosclerosis.
    Dirgenali F; Kara S; Erdogan N; Okandan M
    Comput Biol Med; 2005 Jan; 35(1):57-66. PubMed ID: 15567352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive smoothing: an improved method for spectral analysis and its application to seizure EEG.
    Murro AM; King DW; Flanigin HF; Gallagher BB; Smith JR
    Int J Biomed Comput; 1990 Jul; 26(1-2):63-72. PubMed ID: 2394499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral Doppler estimation utilizing 2-D spatial information and adaptive signal processing.
    Ekroll IK; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1182-92. PubMed ID: 22711413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for Doppler frequency analysis that promises a major improvement in performance.
    Vaitkus PJ; Johnston KW; Cobbold RS
    Ann Vasc Surg; 1989 Oct; 3(4):364-9. PubMed ID: 2688733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):293-306. PubMed ID: 15121001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive spectral doppler estimation.
    Gran F; Jakobsson A; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):700-14. PubMed ID: 19406699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonstationarity broadening reduction in pulsed Doppler spectrum measurements using time-frequency estimators.
    Cardoso JC; Ruano MG; Fish PJ
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1176-86. PubMed ID: 9214836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study and assessment of Doppler ultrasound spectral estimation techniques. Part II: Methods and results.
    Vaitkus PJ; Cobbold RS; Johnston KW
    Ultrasound Med Biol; 1988; 14(8):673-88. PubMed ID: 3062863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Doppler ultrasound of peripheral arteries: a pictorial review.
    Nuffer Z; Rupasov A; Bekal N; Murtha J; Bhatt S
    Clin Imaging; 2017; 46():91-97. PubMed ID: 28755582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):345-54. PubMed ID: 15121004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.