These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8412410)

  • 21. [Role of c-Jun NH (2)-terminal kinase in insulin resistance after burn].
    Chen XL; Xia ZF; Wei D; Ben DF; Tang HT; Ge SD
    Zhonghua Wai Ke Za Zhi; 2007 Jan; 45(1):62-4. PubMed ID: 17403295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Changes in skeletal muscle protein metabolism in burned rats with sepsis and the role of glucocorticoid in skeletal muscle proteolysis].
    Chai J; Shen C; Sheng Z
    Zhonghua Wai Ke Za Zhi; 2002 Sep; 40(9):705-8. PubMed ID: 12411147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of pentobarbital on contractility of mouse skeletal muscle.
    Taylor RG; Abresch RT; Lieberman JS; Fowler WM; Portwood MM
    Exp Neurol; 1984 Feb; 83(2):254-63. PubMed ID: 6692866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mediators of burn-induced neuromuscular changes in mice.
    Tomera JF; Martyn J
    Br J Pharmacol; 1989 Nov; 98(3):921-9. PubMed ID: 2556207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in total ghrelin within the somatotropic axis in severe burn patients: comparison of those with inhalation injury and those without inhalation injury.
    Lee BW; Park SH; Ihm SH; Kim JH; Kim DH; You KC; Kim SW; Yoo HJ
    Growth Horm IGF Res; 2008 Aug; 18(4):291-7. PubMed ID: 18178497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trisphosphoinositol as the intra-myonal signal messenger, crucial in excitation-contraction coupling in muscle.
    Mommaerts WF
    Bioessays; 1986 Jan; 4(1):34-6. PubMed ID: 3491606
    [No Abstract]   [Full Text] [Related]  

  • 27. Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance.
    Cree MG; Aarsland A; Herndon DN; Wolfe RR
    Crit Care Med; 2007 Sep; 35(9 Suppl):S476-83. PubMed ID: 17713396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systemic effects of single hindlimb burn injury on skeletal muscle function and cyclic nucleotide levels in the murine model.
    Tomera JF; Martyn J
    Burns Incl Therm Inj; 1988 Jun; 14(3):210-9. PubMed ID: 2844362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disparate dysfunction of skeletal muscles located near and distant from burn site in the rat.
    Ibebunjo C; Martyn J
    Muscle Nerve; 2001 Oct; 24(10):1283-94. PubMed ID: 11562907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The influence of escharectomy during shock stage on skeletal muscle proteolytic rate in severely scalded rats].
    Wu Y; Chai J; Sheng Z
    Zhonghua Wai Ke Za Zhi; 2002 Mar; 40(3):219-21. PubMed ID: 11955422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential activation of stress-responsive signalling proteins associated with altered loading in a rat skeletal muscle.
    Choi I; Lee K; Kim M; Lee M; Park K
    J Cell Biochem; 2005 Dec; 96(6):1231-43. PubMed ID: 16149053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New model for in vivo investigation after microvascular breakdown in burns: use of intravital fluorescent microscopy.
    Langer S; Goertz O; Steinstraesser L; Kuhnen C; Steinau HU; Homann HH
    Burns; 2005 Mar; 31(2):168-74. PubMed ID: 15683687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A clinical randomized study on the effects of invasive monitoring on burn shock resuscitation.
    Holm C; Mayr M; Tegeler J; Hörbrand F; Henckel von Donnersmarck G; Mühlbauer W; Pfeiffer UJ
    Burns; 2004 Dec; 30(8):798-807. PubMed ID: 15555792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Actions of C-type natriuretic peptide and sodium nitroprusside on carbachol-stimulated inositol phosphate formation and contraction in ciliary and iris sphincter smooth muscles.
    Ding KH; Abdel-Latif AA
    Invest Ophthalmol Vis Sci; 1997 Nov; 38(12):2629-38. PubMed ID: 9375582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Burn injury and pulmonary sepsis: development of a clinically relevant model.
    Davis KA; Santaniello JM; He LK; Muthu K; Sen S; Jones SB; Gamelli RL; Shankar R
    J Trauma; 2004 Feb; 56(2):272-8. PubMed ID: 14960967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative effects of thermal injury and insulin on the metabolism of the skeletal muscle using the perfused rat hindquarter preparation.
    Banta S; Yokoyama T; Berthiaume F; Yarmush ML
    Biotechnol Bioeng; 2004 Dec; 88(5):613-29. PubMed ID: 15470703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inflammatory pain in experimental burns in man.
    Pedersen JL
    Dan Med Bull; 2000 Jun; 47(3):168-95. PubMed ID: 10913984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Disorders of the ventilation-diffusion correlations and of the gas-transport function of the blood in the acute period of burn trauma in children].
    Al'es VF; Biriukov VV; Mamedov IA; Ivanov AI
    Anesteziol Reanimatol; 1997; (4):30-3. PubMed ID: 9382222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sex hormones modulate distant organ injury in both a trauma/hemorrhagic shock model and a burn model.
    Ananthakrishnan P; Cohen DB; Xu DZ; Lu Q; Feketeova E; Deitch EA
    Surgery; 2005 Jan; 137(1):56-65. PubMed ID: 15614282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secophalloidin and phalloidin-(S)-sulfoxide as contraction modifiers for comparative study of skeletal and cardiac muscles.
    Bukatina AE; Kirkpatrick RD; Campbell KB
    Tsitologiia; 2000; 42(1):37-41. PubMed ID: 10709250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.