These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 8412650)

  • 1. Theoretical foundation of the minimum-evolution method of phylogenetic inference.
    Rzhetsky A; Nei M
    Mol Biol Evol; 1993 Sep; 10(5):1073-95. PubMed ID: 8412650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stepwise algorithm for finding minimum evolution trees.
    Kumar S
    Mol Biol Evol; 1996 Apr; 13(4):584-93. PubMed ID: 8882501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of molecular evolutionary phylogenetic trees from DNA sequences based on minimum complexity principle.
    Ren F; Tanaka H; Gojobori T
    Comput Methods Programs Biomed; 1995 Feb; 46(2):121-30. PubMed ID: 7796581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved analyses of human mtDNA sequences support a recent African origin for Homo sapiens.
    Penny D; Steel M; Waddell PJ; Hendy MD
    Mol Biol Evol; 1995 Sep; 12(5):863-82. PubMed ID: 7476132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness of phylogenetic inference based on minimum evolution.
    Pardi F; Guillemot S; Gascuel O
    Bull Math Biol; 2010 Oct; 72(7):1820-39. PubMed ID: 20449671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small.
    Nei M; Kumar S; Takahashi K
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12390-7. PubMed ID: 9770497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Boolean analysis and standard phylogenetic methods using artificially evolved and natural mt-tRNA sequences from great apes.
    Ari E; Ittzés P; Podani J; Thi QC; Jakó E
    Mol Phylogenet Evol; 2012 Apr; 63(1):193-202. PubMed ID: 22289866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny.
    Russo CA; Takezaki N; Nei M
    Mol Biol Evol; 1996 Mar; 13(3):525-36. PubMed ID: 8742641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCA and clustering reveal alternate mtDNA phylogeny of N and M clades.
    Alexe G; Satya RV; Seiler M; Platt D; Bhanot T; Hui S; Tanaka M; Levine AJ; Bhanot G
    J Mol Evol; 2008 Nov; 67(5):465-87. PubMed ID: 18855041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting.
    Desper R; Gascuel O
    Mol Biol Evol; 2004 Mar; 21(3):587-98. PubMed ID: 14694080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimum evolution using ordinary least-squares is less robust than neighbor-joining.
    Willson SJ
    Bull Math Biol; 2005 Mar; 67(2):261-79. PubMed ID: 15710181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach.
    Dopazo J
    J Mol Evol; 1994 Mar; 38(3):300-4. PubMed ID: 8006997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorics of distance-based tree inference.
    Pardi F; Gascuel O
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16443-8. PubMed ID: 23012403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human evolution. A new molecular view of human origins.
    Brookfield JF
    Curr Biol; 1994 Jul; 4(7):651-2. PubMed ID: 7953547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branch length heterogeneity leads to nonindependent branch length estimates and can decrease the efficiency of methods of phylogenetic inference.
    Lyons-Weiler J; Takahashi K
    J Mol Evol; 1999 Sep; 49(3):392-405. PubMed ID: 10473781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary relationships of human populations on a global scale.
    Nei M; Roychoudhury AK
    Mol Biol Evol; 1993 Sep; 10(5):927-43. PubMed ID: 8412653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid heuristic algorithm for finding minimum evolution trees.
    Rodin A; Li WH
    Mol Phylogenet Evol; 2000 Aug; 16(2):173-9. PubMed ID: 10942605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used.
    Takahashi K; Nei M
    Mol Biol Evol; 2000 Aug; 17(8):1251-8. PubMed ID: 10908645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical method for estimating the standard errors of branch lengths in a phylogenetic tree reconstructed without assuming equal rates of nucleotide substitution among different lineages.
    Tajima F
    Mol Biol Evol; 1992 Jan; 9(1):168-81. PubMed ID: 1552838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference.
    Rzhetsky A; Nei M
    J Mol Evol; 1992 Oct; 35(4):367-75. PubMed ID: 1404422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.