These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8412687)

  • 21. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants.
    Weinrauch Y; Guillen N; Dubnau DA
    J Bacteriol; 1989 Oct; 171(10):5362-75. PubMed ID: 2507523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. All seven comG open reading frames are required for DNA binding during transformation of competent Bacillus subtilis.
    Chung YS; Dubnau D
    J Bacteriol; 1998 Jan; 180(1):41-5. PubMed ID: 9422590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification in Listeria monocytogenes of MecA, a homologue of the Bacillus subtilis competence regulatory protein.
    Borezee E; Msadek T; Durant L; Berche P
    J Bacteriol; 2000 Oct; 182(20):5931-4. PubMed ID: 11004200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis.
    van Sinderen D; Luttinger A; Kong L; Dubnau D; Venema G; Hamoen L
    Mol Microbiol; 1995 Feb; 15(3):455-62. PubMed ID: 7783616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis.
    Hahn J; Luttinger A; Dubnau D
    Mol Microbiol; 1996 Aug; 21(4):763-75. PubMed ID: 8878039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system.
    Mueller JP; Bukusoglu G; Sonenshein AL
    J Bacteriol; 1992 Jul; 174(13):4361-73. PubMed ID: 1378051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural genetic competence in Bacillus subtilis natto OK2.
    Ashikaga S; Nanamiya H; Ohashi Y; Kawamura F
    J Bacteriol; 2000 May; 182(9):2411-5. PubMed ID: 10762239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilis.
    Mohan S; Dubnau D
    J Bacteriol; 1990 Jul; 172(7):4064-71. PubMed ID: 1694528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis.
    Nakano MM; Zuber P
    J Bacteriol; 1989 Oct; 171(10):5347-53. PubMed ID: 2507521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction.
    Nakano MM; Nakano S; Zuber P
    Mol Microbiol; 2002 Jun; 44(5):1341-9. PubMed ID: 12028382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis.
    Tortosa P; Albano M; Dubnau D
    Mol Microbiol; 2000 Mar; 35(5):1110-9. PubMed ID: 10712692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases.
    Londoño-Vallejo JA; Dubnau D
    Mol Microbiol; 1993 Jul; 9(1):119-31. PubMed ID: 8412657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis.
    Cutting S; Roels S; Losick R
    J Mol Biol; 1991 Oct; 221(4):1237-56. PubMed ID: 1942049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic competence in Bacillus subtilis.
    Dubnau D
    Microbiol Rev; 1991 Sep; 55(3):395-424. PubMed ID: 1943994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth medium-independent genetic competence mutants of Bacillus subtilis.
    Dubnau D; Roggiani M
    J Bacteriol; 1990 Jul; 172(7):4048-55. PubMed ID: 2113919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis.
    Liu L; Nakano MM; Lee OH; Zuber P
    J Bacteriol; 1996 Sep; 178(17):5144-52. PubMed ID: 8752331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control.
    Haijema BJ; Hamoen LW; Kooistra J; Venema G; van Sinderen D
    Mol Microbiol; 1995 Jan; 15(2):203-11. PubMed ID: 7746142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulation of genetic competence in Bacillus subtilis.
    Dubnau D
    Mol Microbiol; 1991 Jan; 5(1):11-8. PubMed ID: 1901615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch.
    Persuh M; Turgay K; Mandic-Mulec I; Dubnau D
    Mol Microbiol; 1999 Aug; 33(4):886-94. PubMed ID: 10447896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.