These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8413026)

  • 1. Monte Carlo optimization of metal/phosphor screens at megavoltage energies.
    Radcliffe T; Barnea G; Wowk B; Rajapakshe R; Shalev S
    Med Phys; 1993; 20(4):1161-9. PubMed ID: 8413026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy.
    Kausch C; Schreiber B; Kreuder F; Schmidt R; Dössel O
    Med Phys; 1999 Oct; 26(10):2113-24. PubMed ID: 10535628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of optical transport effects on EPID dosimetry using Geant4.
    Blake SJ; Vial P; Holloway L; Greer PB; McNamara AL; Kuncic Z
    Med Phys; 2013 Apr; 40(4):041708. PubMed ID: 23556878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling granular phosphor screens by Monte Carlo methods.
    Liaparinos PF; Kandarakis IS; Cavouras DA; Delis HB; Panayiotakis GS
    Med Phys; 2006 Dec; 33(12):4502-14. PubMed ID: 17278802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo study on the imaging performance of powder Lu2SiO5:Ce phosphor screens under x-ray excitation: comparison with Gd2O2S:Tb screens.
    Liaparinos PF; Kandarakis IS; Cavouras DA; Delis HB; Panayiotakis GS
    Med Phys; 2007 May; 34(5):1724-33. PubMed ID: 17555254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of metal/phosphor screens for on-line portal imaging.
    Wowk B; Radcliffe T; Leszczynski KW; Shalev S; Rajapakshe R
    Med Phys; 1994 Feb; 21(2):227-35. PubMed ID: 8177155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo studies of x-ray energy absorption and quantum noise in megavoltage transmission radiography.
    Jaffray DA; Battista JJ; Fenster A; Munro P
    Med Phys; 1995 Jul; 22(7):1077-88. PubMed ID: 7565382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray scatter in megavoltage transmission radiography: physical characteristics and influence on image quality.
    Jaffray DA; Battista JJ; Fenster A; Munro P
    Med Phys; 1994 Jan; 21(1):45-60. PubMed ID: 8164588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blurring artifacts in megavoltage radiography with a flat-panel imaging system: comparison of Monte Carlo simulations with measurements.
    Schach von Wittenau AE; Logan CM; Aufderheide MB; Slone DM
    Med Phys; 2002 Nov; 29(11):2559-70. PubMed ID: 12462723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The imaging performance of compact Lu2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography.
    Liaparinos PF; Kandarakis IS
    Med Phys; 2009 Jun; 36(6):1985-97. PubMed ID: 19610287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of storage phosphor imaging plates in portal imaging and high-energy radiography: the intensifying effect of metallic screens on the sensitivity.
    Barnea G; Navon E; Ginzburg A; Politch J; Roehrig H; Dick CE; Placious RC
    Med Phys; 1991; 18(3):432-8. PubMed ID: 1870486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the scintillation detector in a combined 3D megavoltage CT scanner and portal imager.
    Mosleh-Shirazi MA; Swindell W; Evans PM
    Med Phys; 1998 Oct; 25(10):1880-90. PubMed ID: 9800695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical photon transport in powdered-phosphor scintillators. Part 1. Multiple-scattering and validity of the Boltzmann transport equation.
    Poludniowski GG; Evans PM
    Med Phys; 2013 Apr; 40(4):041904. PubMed ID: 23556898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overestimations in zero frequency DQE of x-ray imaging converters assessed by Monte Carlo techniques based on the study of energy impartation events.
    Liaparinos PF; Kandarakis IS
    Med Phys; 2011 Jul; 38(7):4440-50. PubMed ID: 21859045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters.
    Poludniowski GG; Evans PM
    Med Phys; 2013 Apr; 40(4):041905. PubMed ID: 23556899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers.
    Teymurazyan A; Pang G
    Med Phys; 2012 Mar; 39(3):1518-29. PubMed ID: 22380384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo studies of the exit photon spectra and dose to a metal/phosphor portal imaging screen.
    Yeboah C; Pistorius S
    Med Phys; 2000 Feb; 27(2):330-9. PubMed ID: 10718136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grooved phosphor screens for on-line portal imaging.
    Wowk B; Shalev S; Radcliffe T
    Med Phys; 1993; 20(6):1641-51. PubMed ID: 8309436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device.
    McCurdy BM; Luchka K; Pistorius S
    Med Phys; 2001 Jun; 28(6):911-24. PubMed ID: 11439488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Y2O2S:Eu phosphor screens evaluation.
    Giakoumakis GE; Nomicos CD; Skountzos P; Koutroubas S; Zisos A; Yiakoumakis EN; Katsarioti MC; Kaliakatsos JA; Rovithi M; Panayiotakis GS
    Med Phys; 1993; 20(1):79-83. PubMed ID: 8455516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.