BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 8413183)

  • 1. Excess histidine enzymes cause AICAR-independent filamentation in Escherichia coli.
    Frandsen N; D'Ari R
    Mol Gen Genet; 1993 Sep; 240(3):348-54. PubMed ID: 8413183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AICAR is not an endogenous mutagen in Escherichia coli.
    Fox M; Frandsen N; D'Ari R
    Mol Gen Genet; 1993 Sep; 240(3):355-9. PubMed ID: 8413184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pleiotropic effects of his overexpression in Salmonella typhimurium do not involve AICAR-induced mutagenesis.
    Flores A; Fox M; Casadesús J
    Mol Gen Genet; 1993 Sep; 240(3):360-4. PubMed ID: 8413185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific features of L-histidine production by Escherichia coli concerned with feedback control of AICAR formation and inorganic phosphate/metal transport.
    Malykh EA; Butov IA; Ravcheeva AB; Krylov AA; Mashko SV; Stoynova NV
    Microb Cell Fact; 2018 Mar; 17(1):42. PubMed ID: 29544475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of purine biosynthetic intermediates in response to folate stress in Escherichia coli.
    Rohlman CE; Matthews RG
    J Bacteriol; 1990 Dec; 172(12):7200-10. PubMed ID: 2254281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of histidine in regulating the synthesis of purine nucleotides in Escherichia coli cells].
    Chakhmakhchian SS; Kliakcho EV; Shakulov RS; Domkin VD
    Mol Gen Mikrobiol Virusol; 1992; (1-2):15-8. PubMed ID: 1620151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imidazole glycerol phosphate synthase: the glutamine amidotransferase in histidine biosynthesis.
    Klem TJ; Davisson VJ
    Biochemistry; 1993 May; 32(19):5177-86. PubMed ID: 8494895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZTP (5-amino 4-imidazole carboxamide riboside 5'-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency.
    Bochner BR; Ames BN
    Cell; 1982 Jul; 29(3):929-37. PubMed ID: 6185232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica.
    Bazurto JV; Heitman NJ; Downs DM
    J Bacteriol; 2015 Sep; 197(17):2821-30. PubMed ID: 26100042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic evidence for 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as a negative effector of cytochrome terminal oxidase cbb3 production in Rhizobium etli.
    Soberón M; Lopez O; Miranda J; Tabche ML; Morera C
    Mol Gen Genet; 1997 May; 254(6):665-73. PubMed ID: 9202382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica.
    Allen S; Zilles JL; Downs DM
    J Bacteriol; 2002 Nov; 184(22):6130-7. PubMed ID: 12399482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino-4-imidazolecarboxamide ribotide directly inhibits coenzyme A biosynthesis in Salmonella enterica.
    Bazurto JV; Downs DM
    J Bacteriol; 2014 Feb; 196(4):772-9. PubMed ID: 24296672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity in the purine-thiamine metabolic network of Salmonella.
    Bazurto JV; Downs DM
    Genetics; 2011 Feb; 187(2):623-31. PubMed ID: 21135073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines.
    Vázquez-Salazar A; Becerra A; Lazcano A
    PLoS One; 2018; 13(4):e0196349. PubMed ID: 29698445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ancient alarmone ZTP and zinc homeostasis in Bacillus subtilis.
    Nies DH
    Mol Microbiol; 2019 Sep; 112(3):741-746. PubMed ID: 31220391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual control of the gua operon of Escherichia coli K12 by adenine and guanine nucleotides.
    Mehra RK; Drabble WT
    J Gen Microbiol; 1981 Mar; 123(1):27-37. PubMed ID: 6119351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of hisF and hisH gene products in histidine biosynthesis.
    Rieder G; Merrick MJ; Castorph H; Kleiner D
    J Biol Chem; 1994 May; 269(20):14386-90. PubMed ID: 8182043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae.
    Saint-Marc C; Hürlimann HC; Daignan-Fornier B; Pinson B
    Curr Genet; 2015 Nov; 61(4):633-40. PubMed ID: 25893566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and purification of the 5'-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology.
    Yusupova YR; Skripnikova VS; Kivero AD; Zakataeva NP
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):2957-2972. PubMed ID: 32040605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of the substrate specificity, kinetic and catalytic mechanism of adenylosuccinate lyase from Plasmodium falciparum.
    Bulusu V; Srinivasan B; Bopanna MP; Balaram H
    Biochim Biophys Acta; 2009 Apr; 1794(4):642-54. PubMed ID: 19111634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.