These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 8413199)
41. Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the beta 1, gamma 2S, and gamma 2L subunits of the gamma-aminobutyric acid type A receptor. Moss SJ; Doherty CA; Huganir RL J Biol Chem; 1992 Jul; 267(20):14470-6. PubMed ID: 1321150 [TBL] [Abstract][Full Text] [Related]
42. The myogenic basic helix-loop-helix family of transcription factors shows similar requirements for SWI/SNF chromatin remodeling enzymes during muscle differentiation in culture. Roy K; de la Serna IL; Imbalzano AN J Biol Chem; 2002 Sep; 277(37):33818-24. PubMed ID: 12105204 [TBL] [Abstract][Full Text] [Related]
43. Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Huang W; Zhou X; Lefebvre V; de Crombrugghe B Mol Cell Biol; 2000 Jun; 20(11):4149-58. PubMed ID: 10805756 [TBL] [Abstract][Full Text] [Related]
44. Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site. Hsieh JC; Jurutka PW; Nakajima S; Galligan MA; Haussler CA; Shimizu Y; Shimizu N; Whitfield GK; Haussler MR J Biol Chem; 1993 Jul; 268(20):15118-26. PubMed ID: 8392065 [TBL] [Abstract][Full Text] [Related]
45. mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Dodou E; Xu SM; Black BL Mech Dev; 2003 Sep; 120(9):1021-32. PubMed ID: 14550531 [TBL] [Abstract][Full Text] [Related]
46. A novel E1A domain mediates skeletal-muscle-specific enhancer repression independently of pRB and p300 binding. Sandmöller A; Meents H; Arnold HH Mol Cell Biol; 1996 Oct; 16(10):5846-56. PubMed ID: 8816499 [TBL] [Abstract][Full Text] [Related]
47. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1. Balendran A; Biondi RM; Cheung PC; Casamayor A; Deak M; Alessi DR J Biol Chem; 2000 Jul; 275(27):20806-13. PubMed ID: 10764742 [TBL] [Abstract][Full Text] [Related]
48. Phosphorylation of the oncogenic transcription factor interferon regulatory factor 2 (IRF2) in vitro and in vivo. Birnbaum MJ; van Zundert B; Vaughan PS; Whitmarsh AJ; van Wijnen AJ; Davis RJ; Stein GS; Stein JL J Cell Biochem; 1997 Aug; 66(2):175-83. PubMed ID: 9213219 [TBL] [Abstract][Full Text] [Related]
51. Inhibition of the DNA-binding and transcriptional repression activity of the Wilms' tumor gene product, WT1, by cAMP-dependent protein kinase-mediated phosphorylation of Ser-365 and Ser-393 in the zinc finger domain. Sakamoto Y; Yoshida M; Semba K; Hunter T Oncogene; 1997 Oct; 15(17):2001-12. PubMed ID: 9366517 [TBL] [Abstract][Full Text] [Related]
52. Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites. Leonard AS; Hell JW J Biol Chem; 1997 May; 272(18):12107-15. PubMed ID: 9115280 [TBL] [Abstract][Full Text] [Related]
53. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Hamamori Y; Wu HY; Sartorelli V; Kedes L Mol Cell Biol; 1997 Nov; 17(11):6563-73. PubMed ID: 9343420 [TBL] [Abstract][Full Text] [Related]
54. Examination of mammalian basic helix-loop-helix transcription factors using a yeast one-hybrid system. Mak KL; Longcor LC; Johnson SE; Lemercier C; To RQ; Konieczny SF DNA Cell Biol; 1996 Jan; 15(1):1-8. PubMed ID: 8561893 [TBL] [Abstract][Full Text] [Related]
55. Inhibition of muscle differentiation by the adenovirus E1a protein: repression of the transcriptional activating function of the HLH protein Myf-5. Braun T; Bober E; Arnold HH Genes Dev; 1992 May; 6(5):888-902. PubMed ID: 1315706 [TBL] [Abstract][Full Text] [Related]
56. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Kong Y; Flick MJ; Kudla AJ; Konieczny SF Mol Cell Biol; 1997 Aug; 17(8):4750-60. PubMed ID: 9234731 [TBL] [Abstract][Full Text] [Related]
57. Expression of the myogenic gene MRF4 during Xenopus development. Jennings CG Dev Biol; 1992 May; 151(1):319-32. PubMed ID: 1374354 [TBL] [Abstract][Full Text] [Related]
58. Differential trans-activation of muscle-specific regulatory elements including the mysosin light chain box by chicken MyoD, myogenin, and MRF4. Fujisawa-Sehara A; Nabeshima Y; Komiya T; Uetsuki T; Asakura A; Nabeshima Y J Biol Chem; 1992 May; 267(14):10031-8. PubMed ID: 1374396 [TBL] [Abstract][Full Text] [Related]
59. DNA repair protein O6-alkylguanine-DNA alkyltransferase is phosphorylated by two distinct and novel protein kinases in human brain tumour cells. Mullapudi SR; Ali-Osman F; Shou J; Srivenugopal KS Biochem J; 2000 Oct; 351 Pt 2(Pt 2):393-402. PubMed ID: 11023825 [TBL] [Abstract][Full Text] [Related]
60. The small conductance calcium-activated potassium channel regulates ion channel expression in C3H10T1/2 cells ectopically expressing the muscle regulatory factor MRF4. Peña TL; Rane SG J Biol Chem; 1997 Aug; 272(35):21909-16. PubMed ID: 9268324 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]