These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8413201)

  • 1. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2.
    Piña B; Berger S; Marcus GA; Silverman N; Agapite J; Guarente L
    Mol Cell Biol; 1993 Oct; 13(10):5981-9. PubMed ID: 8413201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains.
    Berger SL; Piña B; Silverman N; Marcus GA; Agapite J; Regier JL; Triezenberg SJ; Guarente L
    Cell; 1992 Jul; 70(2):251-65. PubMed ID: 1638630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADA5/SPT20 links the ADA and SPT genes, which are involved in yeast transcription.
    Marcus GA; Horiuchi J; Silverman N; Guarente L
    Mol Cell Biol; 1996 Jun; 16(6):3197-205. PubMed ID: 8649430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex.
    Horiuchi J; Silverman N; Marcus GA; Guarente L
    Mol Cell Biol; 1995 Mar; 15(3):1203-9. PubMed ID: 7862114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors.
    Marcus GA; Silverman N; Berger SL; Horiuchi J; Guarente L
    EMBO J; 1994 Oct; 13(20):4807-15. PubMed ID: 7957049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional analysis of yeast putative adaptors. Evidence for an adaptor complex in vivo.
    Candau R; Berger SL
    J Biol Chem; 1996 Mar; 271(9):5237-45. PubMed ID: 8617808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription.
    Silverman N; Agapite J; Guarente L
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11665-8. PubMed ID: 7972120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis indicates that the human foamy virus Bel-1 protein contains a transcription activation domain of the acidic class.
    Blair WS; Bogerd H; Cullen BR
    J Virol; 1994 Jun; 68(6):3803-8. PubMed ID: 8189518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains.
    Chou S; Struhl K
    Mol Cell Biol; 1997 Dec; 17(12):6794-802. PubMed ID: 9372910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein.
    Barlev NA; Candau R; Wang L; Darpino P; Silverman N; Berger SL
    J Biol Chem; 1995 Aug; 270(33):19337-44. PubMed ID: 7642611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of growth inhibition by GAL4-L kappa B-alpha in Saccharomyces cerevisiae.
    Morin PJ; Downs JA; Snodgrass AM; Gilmore TD
    Cell Growth Differ; 1995 Jul; 6(7):789-98. PubMed ID: 7547500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acidic transcriptional activation domains of herpes virus VP16 and yeast HAP4 have different co-factor requirements.
    Wang L; Turcotte B; Guarente L; Berger SL
    Gene; 1995 Jun; 158(2):163-70. PubMed ID: 7607537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2.
    Georgakopoulos T; Gounalaki N; Thireos G
    Mol Gen Genet; 1995 Mar; 246(6):723-8. PubMed ID: 7898440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3.
    Horiuchi J; Silverman N; Piña B; Marcus GA; Guarente L
    Mol Cell Biol; 1997 Jun; 17(6):3220-8. PubMed ID: 9154821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription.
    Shi X; Finkelstein A; Wolf AJ; Wade PA; Burton ZF; Jaehning JA
    Mol Cell Biol; 1996 Feb; 16(2):669-76. PubMed ID: 8552095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of gene expression by glucose in Saccharomyces cerevisiae: a role for ADA2 and ADA3/NGG1.
    Wu M; Newcomb L; Heideman W
    J Bacteriol; 1999 Aug; 181(16):4755-60. PubMed ID: 10438741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors.
    Berger SL; Cress WD; Cress A; Triezenberg SJ; Guarente L
    Cell; 1990 Jun; 61(7):1199-208. PubMed ID: 2163758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae.
    Talibi D; Raymond M
    J Bacteriol; 1999 Jan; 181(1):231-40. PubMed ID: 9864335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids.
    Drysdale CM; Dueñas E; Jackson BM; Reusser U; Braus GH; Hinnebusch AG
    Mol Cell Biol; 1995 Mar; 15(3):1220-33. PubMed ID: 7862116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TAP1, a yeast gene that activates the expression of a tRNA gene with a defective internal promoter.
    Di Segni G; McConaughy BL; Shapiro RA; Aldrich TL; Hall BD
    Mol Cell Biol; 1993 Jun; 13(6):3424-33. PubMed ID: 8497259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.