These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 8413842)
1. Effects of minocycline on accumulation of cyclic AMP in cerebral cortex of rat. A comparison with lithium. Mørk A; Geisler A Neuropharmacology; 1993 Aug; 32(8):793-8. PubMed ID: 8413842 [TBL] [Abstract][Full Text] [Related]
2. A comparative study on the effects of tetracyclines and lithium on the cyclic AMP second messenger system in rat brain. Mørk A; Geisler A Prog Neuropsychopharmacol Biol Psychiatry; 1995 Jan; 19(1):157-69. PubMed ID: 7708928 [TBL] [Abstract][Full Text] [Related]
3. Effects of lithium in vitro and ex vivo on components of the adenylate cyclase system in membranes from the cerebral cortex of the rat. Newman ME; Belmaker RH Neuropharmacology; 1987; 26(2-3):211-7. PubMed ID: 3035412 [TBL] [Abstract][Full Text] [Related]
4. Actions of lithium on the cyclic AMP signalling system in various regions of the brain--possible relations to its psychotropic actions. A study on the adenylate cyclase in rat cerebral cortex, corpus striatum and hippocampus. Mørk A Pharmacol Toxicol; 1993; 73 Suppl 3():1-47. PubMed ID: 8146086 [TBL] [Abstract][Full Text] [Related]
5. Involvement of metabotropic glutamate receptors in Gi- and Gs-dependent modulation of adenylate cyclase activity induced by a novel cognition enhancer NS-105 in rat brain. Oka M; Itoh Y; Shimidzu T; Ukai Y; Yoshikuni Y; Kimura K Brain Res; 1997 Apr; 754(1-2):121-30. PubMed ID: 9134967 [TBL] [Abstract][Full Text] [Related]
6. Lithium effects on noradrenergic-linked adenylate cyclase activity in intact rat brain: an in vivo microdialysis study. Masana MI; Bitran JA; Hsiao JK; Mefford IN; Potter WZ Brain Res; 1991 Jan; 538(2):333-6. PubMed ID: 1849439 [TBL] [Abstract][Full Text] [Related]
7. Effects of treatment with a lithium-imipramine combination on components of adenylate cyclase in the cerebral cortex of the rat. Mørk A; Klysner R; Geisler A Neuropharmacology; 1990 Mar; 29(3):261-7. PubMed ID: 2109275 [TBL] [Abstract][Full Text] [Related]
8. Inhibition by antibiotic tetracyclines of rat cortical noradrenergic adenylate cyclase and amphetamine-induced hyperactivity. Kofman O; Klein E; Newman M; Hamburger R; Kimchi O; Nir T; Shimon H; Belmaker RH Pharmacol Biochem Behav; 1990 Nov; 37(3):417-24. PubMed ID: 1965041 [TBL] [Abstract][Full Text] [Related]
9. The effects of lithium in vitro and ex vivo on adenylate cyclase in brain are exerted by distinct mechanisms. Mørk A; Geisler A Neuropharmacology; 1989 Mar; 28(3):307-11. PubMed ID: 2542834 [TBL] [Abstract][Full Text] [Related]
10. Electroconvulsive shock and cyclic AMP signal transduction: effects distal to the receptor. Newman ME; Solomon H; Lerer B J Neurochem; 1986 Jun; 46(6):1667-9. PubMed ID: 3009714 [TBL] [Abstract][Full Text] [Related]
11. Sodium dependent 3H-noradrenaline release from rat neocortical slices in the absence of extracellular calcium: presynaptic modulation by mu-opioid receptor and adenylate cyclase activation. Schoffelmeer AN; Hogenboom F; Mulder AH Naunyn Schmiedebergs Arch Pharmacol; 1988 Nov; 338(5):548-52. PubMed ID: 2854212 [TBL] [Abstract][Full Text] [Related]
12. Effects of lithium on calmodulin-stimulated adenylate cyclase activity in cortical membranes from rat brain. Mørk A; Geisler A Pharmacol Toxicol; 1987 Jan; 60(1):17-23. PubMed ID: 3031639 [TBL] [Abstract][Full Text] [Related]
13. Effects of lithium in vitro on noradrenaline-induced cyclic AMP accumulation in rat cortical slices after reserpine-induced supersensitivity. Newman ME; Lichtenberg P; Belmaker RH Neuropharmacology; 1985 Apr; 24(4):353-5. PubMed ID: 2987730 [TBL] [Abstract][Full Text] [Related]
14. Role of adenylate cyclase in presynaptic alpha 2-adrenoceptor- and mu-opioid receptor-mediated inhibition of [3H]noradrenaline release from rat brain cortex slices. Schoffelmeer AN; Wierenga EA; Mulder AH J Neurochem; 1986 Jun; 46(6):1711-7. PubMed ID: 2422322 [TBL] [Abstract][Full Text] [Related]
15. Evidence for different interactions between beta(1)- and beta(2)-adrenoceptor subtypes with adenylyl cyclase in the rat brain: a concentration-response study using forskolin. Morin D; Sapena R; Tillement JP; Urien S Pharmacol Res; 2000 Apr; 41(4):435-43. PubMed ID: 10704268 [TBL] [Abstract][Full Text] [Related]
16. Post-receptor-mediated increases in adenylate cyclase activity after chronic antidepressant treatment: relationship to receptor desensitization. Newman ME; Lerer B Eur J Pharmacol; 1989 Mar; 162(2):345-52. PubMed ID: 2721569 [TBL] [Abstract][Full Text] [Related]
17. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex. Tsai SF; Yang C; Wang SC; Wang JS; Hwang JS; Ho SP Toxicol Appl Pharmacol; 2004 Jan; 194(1):34-40. PubMed ID: 14728977 [TBL] [Abstract][Full Text] [Related]
18. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-stimulated cyclic AMP synthesis in rat cerebral cortical slices: interaction with noradrenaline, adrenaline, and forskolin. Nowak JZ; Kuba K J Mol Neurosci; 2002; 18(1-2):47-52. PubMed ID: 11931349 [TBL] [Abstract][Full Text] [Related]
19. Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin: augmentation of receptor-mediated responses. Daly JW; Padgett W; Seamon KB J Neurochem; 1982 Feb; 38(2):532-44. PubMed ID: 6125572 [TBL] [Abstract][Full Text] [Related]
20. Differential effects of chronic administration of desipramine on the cyclic AMP response in cortical slices and membranes in the rat. Newman ME; Lipot M; Lerer B Neuropharmacology; 1987 Aug; 26(8):1127-30. PubMed ID: 2821440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]