These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 8415699)
1. Multiple nucleosome positioning with unique rotational setting for the Saccharomyces cerevisiae 5S rRNA gene in vitro and in vivo. Buttinelli M; Di Mauro E; Negri R Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9315-9. PubMed ID: 8415699 [TBL] [Abstract][Full Text] [Related]
2. Changing nucleosome positions through modification of the DNA rotational information. Buttinelli M; Negri R; Di Marcotullio L; Di Mauro E Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10747-51. PubMed ID: 7479876 [TBL] [Abstract][Full Text] [Related]
3. DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequences in vitro. Dong F; Hansen JC; van Holde KE Proc Natl Acad Sci U S A; 1990 Aug; 87(15):5724-8. PubMed ID: 2377610 [TBL] [Abstract][Full Text] [Related]
4. Changing nucleosome positions in vivo through modification of the DNA rotational information. Di Marcotullio L; Buttinelli M; Costanzo G; Di Mauro E; Negri R Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):65-9. PubMed ID: 9639563 [TBL] [Abstract][Full Text] [Related]
5. Ultraviolet damage and nucleosome folding of the 5S ribosomal RNA gene. Liu X; Mann DB; Suquet C; Springer DL; Smerdon MJ Biochemistry; 2000 Jan; 39(3):557-66. PubMed ID: 10642180 [TBL] [Abstract][Full Text] [Related]
6. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. Tanaka S; Livingstone-Zatchej M; Thoma F J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475 [TBL] [Abstract][Full Text] [Related]
7. Mobility of positioned nucleosomes on 5 S rDNA. Pennings S; Meersseman G; Bradbury EM J Mol Biol; 1991 Jul; 220(1):101-10. PubMed ID: 2067009 [TBL] [Abstract][Full Text] [Related]
8. Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Hayes JJ; Wolffe AP Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6415-9. PubMed ID: 8341648 [TBL] [Abstract][Full Text] [Related]
9. Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. Felts SJ; Weil PA; Chalkley R Mol Cell Biol; 1990 May; 10(5):2390-401. PubMed ID: 2183033 [TBL] [Abstract][Full Text] [Related]
10. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Flaus A; Luger K; Tan S; Richmond TJ Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1370-5. PubMed ID: 8643638 [TBL] [Abstract][Full Text] [Related]
11. Histone contributions to the structure of DNA in the nucleosome. Hayes JJ; Clark DJ; Wolffe AP Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6829-33. PubMed ID: 1650485 [TBL] [Abstract][Full Text] [Related]
12. Novel nucleosomal particles containing core histones and linker DNA but no histone H1. Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169 [TBL] [Abstract][Full Text] [Related]
13. Chromatosome positioning on assembled long chromatin. Linker histones affect nucleosome placement on 5 S rDNA. Meersseman G; Pennings S; Bradbury EM J Mol Biol; 1991 Jul; 220(1):89-100. PubMed ID: 2067021 [TBL] [Abstract][Full Text] [Related]
14. Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin. Sato MH; Ura K; Hohmura KI; Tokumasu F; Yoshimura SH; Hanaoka F; Takeyasu K FEBS Lett; 1999 Jun; 452(3):267-71. PubMed ID: 10386604 [TBL] [Abstract][Full Text] [Related]
15. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes. Duggan MM; Thomas JO J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807 [TBL] [Abstract][Full Text] [Related]
16. DNA protein-interactions at the Saccharomyces cerevisiae 35 S rRNA promoter and in its surrounding region. Vogelauer M; Cioci F; Camilloni G J Mol Biol; 1998 Jan; 275(2):197-209. PubMed ID: 9466903 [TBL] [Abstract][Full Text] [Related]
17. Chromatin reconstitution on small DNA rings. IV. DNA supercoiling and nucleosome sequence preference. Duband-Goulet I; Carot V; Ulyanov AV; Douc-Rasy S; Prunell A J Mol Biol; 1992 Apr; 224(4):981-1001. PubMed ID: 1314907 [TBL] [Abstract][Full Text] [Related]
18. Combined micrococcal nuclease and exonuclease III digestion reveals precise positions of the nucleosome core/linker junctions: implications for high-resolution nucleosome mapping. Nikitina T; Wang D; Gomberg M; Grigoryev SA; Zhurkin VB J Mol Biol; 2013 Jun; 425(11):1946-1960. PubMed ID: 23458408 [TBL] [Abstract][Full Text] [Related]
19. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Gutiérrez G; Millán-Zambrano G; Medina DA; Jordán-Pla A; Pérez-Ortín JE; Peñate X; Chávez S Epigenetics Chromatin; 2017 Dec; 10(1):58. PubMed ID: 29212533 [TBL] [Abstract][Full Text] [Related]
20. DNA sequence-directed nucleosome reconstitution on 5S RNA genes of Xenopus laevis. Gottesfeld JM Mol Cell Biol; 1987 May; 7(5):1612-22. PubMed ID: 3600640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]