BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8415907)

  • 1. Electronic effects on the fluorescence of tyrosine in small peptides.
    Seidel C; Orth A; Greulich KO
    Photochem Photobiol; 1993 Aug; 58(2):178-84. PubMed ID: 8415907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-peptide interactions as probed by tryptophan fluorescence: serum albumins and enkephalin metabolites.
    Jain S; Kumar CV; Kalonia DS
    Pharm Res; 1992 Aug; 9(8):990-2. PubMed ID: 1409388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local structure in a tryptic fragment of performic acid oxidized ribonuclease A corresponding to a proposed polypeptide chain-folding initiation site detected by tyrosine fluorescence lifetime and proton magnetic resonance measurements.
    Haas E; Montelione GT; McWherter CA; Scheraga HA
    Biochemistry; 1987 Mar; 26(6):1672-83. PubMed ID: 3593685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of alkyl group on amide nitrogen atom on fluorescence quenching of tyrosine amide and N-acetyltyrosine amide.
    Mrozek J; Rzeska A; Guzow K; Karolczak J; Wiczk W
    Biophys Chem; 2004 Oct; 111(2):105-13. PubMed ID: 15381308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence quenching in a strongly helical peptide series: the role of noncovalent pathways in modulating electronic interactions.
    Basu G; Anglos D; Kuki A
    Biochemistry; 1993 Mar; 32(12):3067-76. PubMed ID: 8457567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Synthesis of stearoyl derivatives of proline-containing hydrophobic peptides].
    Iskhakova FKh; Esipova OV; Zvonkova EN
    Bioorg Khim; 1995 Aug; 21(8):596-603. PubMed ID: 8540900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of the peptide conformation on the micellar surface.
    Shapiro YuE ; Gorbatyuk VYa ; Mazurov AA; Andronati SA
    Analyst; 1994 Apr; 119(4):647-52. PubMed ID: 8024121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopy and fluorescence quenching of tyrosine in lima bean trypsin/chymotrypsin inhibitor and model peptides.
    Liu XY; Cottrell KO; Nordlund TM
    Photochem Photobiol; 1989 Dec; 50(6):721-31. PubMed ID: 2626488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved fluorescence and 1H NMR studies of tyrosyl residues in oxytocin and small peptides: correlation of NMR-determined conformations of tyrosyl residues and fluorescence decay kinetics.
    Ross JB; Laws WR; Buku A; Sutherland JC; Wyssbrod HR
    Biochemistry; 1986 Feb; 25(3):607-12. PubMed ID: 3955017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitized photooxidation of Di- and tripeptides of tyrosine.
    Criado S; Soltermann AT; Marioli JM; García NA
    Photochem Photobiol; 1998 Oct; 68(4):453-8. PubMed ID: 9796430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides.
    Adams PD; Chen Y; Ma K; Zagorski MG; Sönnichsen FD; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Aug; 124(31):9278-86. PubMed ID: 12149035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotamer interconversion and its influence on the fluorescence decay of tyrosine: a molecular dynamics study.
    Kungl AJ
    Biophys Chem; 1992 Nov; 45(1):41-50. PubMed ID: 1467444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of Amino Acids, Di- and Tripeptides with the Environmental Oxidant NO
    Nathanael JG; Hancock AN; Wille U
    Chem Asian J; 2016 Nov; 11(22):3188-3195. PubMed ID: 27599126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of structure transition of donor-acceptor labeled peptides temperature dependence of fluorescence quenching kinetics.
    Min W; Sun L
    Protein Pept Lett; 2003 Feb; 10(1):43-51. PubMed ID: 12625825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins.
    Mukkamala D; Zhang Y; Oldfield E
    J Am Chem Soc; 2007 Jun; 129(23):7385-92. PubMed ID: 17506558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous temperature fluorescence quenching of N-Trp terminal peptides.
    Brancaleon L; Crippa PR; Diemmi D
    Biopolymers; 1995 Dec; 36(6):723-33. PubMed ID: 8555420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quenching of tryptophan fluorescence by brominated phospholipid.
    Bolen EJ; Holloway PW
    Biochemistry; 1990 Oct; 29(41):9638-43. PubMed ID: 2271606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of charge, charge distribution, and hydrophobicity on the transport of short model peptides into liposomes in response to transmembrane pH gradients.
    Chakrabarti AC; Clark-Lewis I; Cullis PR
    Biochemistry; 1994 Jul; 33(28):8479-85. PubMed ID: 8031781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycyl-histidyl-lysine (GHK) is a quencher of alpha,beta-4-hydroxy-trans-2-nonenal: a comparison with carnosine. insights into the mechanism of reaction by electrospray ionization mass spectrometry, 1H NMR, and computational techniques.
    Beretta G; Artali R; Regazzoni L; Panigati M; Facino RM
    Chem Res Toxicol; 2007 Sep; 20(9):1309-14. PubMed ID: 17672515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.