These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8415934)

  • 41. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats.
    Raybould HE; Taché Y
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G242-6. PubMed ID: 3136661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1993 Oct; 265(4 Pt 2):R872-6. PubMed ID: 8238459
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of cholecystokinin in the regulation of liquid gastric emptying and gastric motility in humans: studies with the CCK antagonist loxiglumide.
    Schwizer W; Borovicka J; Kunz P; Fraser R; Kreiss C; D'Amato M; Crelier G; Boesiger P; Fried M
    Gut; 1997 Oct; 41(4):500-4. PubMed ID: 9391249
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Satiety effects of the type A CCK receptor antagonist loxiglumide in lean and obese women.
    Lieverse RJ; Masclee AA; Jansen JB; Rovati LC; Lamers CB
    Biol Psychiatry; 1995 Mar; 37(5):331-5. PubMed ID: 7748985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 2-Naphthalenesulphanyl-L-aspartyl-2-(phenethyl) amide (2-NAP) and food intake in rats: evidence that endogenous peripheral CCK does not play a major role as a satiety factor.
    Ebenezer IS; Baldwin BA
    Br J Pharmacol; 1995 Nov; 116(5):2371-4. PubMed ID: 8581271
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intestinal lipid inhibits gastric emptying via CCK and a vagal capsaicin-sensitive afferent pathway in rats.
    Hölzer HH; Turkelson CM; Solomon TE; Raybould HE
    Am J Physiol; 1994 Oct; 267(4 Pt 1):G625-9. PubMed ID: 7943327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Overview. Cholecystokinin and eating.
    Beglinger C
    Curr Opin Investig Drugs; 2002 Apr; 3(4):587-8. PubMed ID: 12090729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The roles of hepatic nerves in the reduction of food intake as a consequence of intraportal sodium propionate administration in sheep.
    Anil MH; Forbes JM
    Q J Exp Physiol; 1988 Jul; 73(4):539-46. PubMed ID: 3174914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Endogenous cholecystokinin reduces feeding in young rats.
    Weller A; Smith GP; Gibbs J
    Science; 1990 Mar; 247(4950):1589-91. PubMed ID: 2321020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Urocortins and cholecystokinin-8 act synergistically to increase satiation in lean but not obese mice: involvement of corticotropin-releasing factor receptor-2 pathway.
    Gourcerol G; Wang L; Wang YH; Million M; Taché Y
    Endocrinology; 2007 Dec; 148(12):6115-23. PubMed ID: 17932219
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CCK antagonists and CCK-monoamine interactions in the control of satiety.
    Cooper SJ; Dourish CT; Clifton PG
    Am J Clin Nutr; 1992 Jan; 55(1 Suppl):291S-295S. PubMed ID: 1728842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Brain regions where cholecystokinin exerts its effect on satiety.
    Schick RR; Schusdziarra V; Yaksh TL; Go VL
    Ann N Y Acad Sci; 1994 Mar; 713():242-54. PubMed ID: 8185166
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Central and peripheral effects of CCK receptor antagonists on satiety in dogs.
    Cheng CA; Geoghegan JG; Lawson DC; Berlangieri SU; Akwari O; Pappas TN
    Am J Physiol; 1993 Aug; 265(2 Pt 1):G219-23. PubMed ID: 8368307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potent and sustained satiety actions of a cholecystokinin octapeptide analogue.
    Moran TH; Sawyer TK; Seeb DH; Ameglio PJ; Lombard MA; McHugh PR
    Am J Clin Nutr; 1992 Jan; 55(1 Suppl):286S-290S. PubMed ID: 1728841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Peptidergic control of food intake in food-producing animals.
    Baile CA; Della-Fera MA
    Fed Proc; 1984 Nov; 43(14):2898-902. PubMed ID: 6092147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of cholecystokinin receptors in the short-term control of food intake.
    Sayegh AI
    Prog Mol Biol Transl Sci; 2013; 114():277-316. PubMed ID: 23317788
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia.
    Broberger C; Holmberg K; Shi TJ; Dockray G; Hökfelt T
    Brain Res; 2001 Jun; 903(1-2):128-40. PubMed ID: 11382396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationships between gastric motility and gastric vagal afferent responses to CCK and GRP in rats differ.
    Schwartz GJ; Moran TH; White WO; Ladenheim EE
    Am J Physiol; 1997 Jun; 272(6 Pt 2):R1726-33. PubMed ID: 9227583
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased food intake after type A but not type B cholecystokinin receptor blockade.
    Corwin RL; Gibbs J; Smith GP
    Physiol Behav; 1991 Jul; 50(1):255-8. PubMed ID: 1946726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.