These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 8416225)
1. Effect of systemic hypotension on cerebral energy metabolism during chronic cerebral vasospasm in primates. Handa Y; Kubota T; Tsuchida A; Kaneko M; Caner H; Kobayashi H; Kubota T J Neurosurg; 1993 Jan; 78(1):112-9. PubMed ID: 8416225 [TBL] [Abstract][Full Text] [Related]
2. Time course of the impairment of cerebral autoregulation during chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Handa Y; Hayashi M; Takeuchi H; Kubota T; Kobayashi H; Kawano H J Neurosurg; 1992 Mar; 76(3):493-501. PubMed ID: 1738032 [TBL] [Abstract][Full Text] [Related]
3. Impairment of cerebral autoregulation during the development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Takeuchi H; Handa Y; Kobayashi H; Kawano H; Hayashi M Neurosurgery; 1991 Jan; 28(1):41-8. PubMed ID: 1994280 [TBL] [Abstract][Full Text] [Related]
4. [Detection of changes in cerebral blood flow and cerebrovascular autoregulation by near-infrared spectroscopy in newborn piglets]. Huang HJ; Shao XM; Cheng GQ Zhonghua Er Ke Za Zhi; 2007 May; 45(5):349-53. PubMed ID: 17697620 [TBL] [Abstract][Full Text] [Related]
5. In vivo proton magnetic resonance spectroscopy for metabolic changes in brain during chronic cerebral vasospasm in primates. Handa Y; Kaneko M; Matuda T; Kobayashi H; Kubota T Neurosurgery; 1997 Apr; 40(4):773-80; discussion 780-1. PubMed ID: 9092851 [TBL] [Abstract][Full Text] [Related]
6. The effects of hypovolemic hypotension on high-energy phosphate metabolism of traumatized brain in rats. Ishige N; Pitts LH; Berry I; Nishimura MC; James TL J Neurosurg; 1988 Jan; 68(1):129-36. PubMed ID: 3335898 [TBL] [Abstract][Full Text] [Related]
7. Flow thresholds for cerebral energy disturbance and Na+ pump failure as studied by in vivo 31P and 23Na nuclear magnetic resonance spectroscopy. Naritomi H; Sasaki M; Kanashiro M; Kitani M; Sawada T J Cereb Blood Flow Metab; 1988 Feb; 8(1):16-23. PubMed ID: 2448321 [TBL] [Abstract][Full Text] [Related]
8. Effects of repeated ischemia on cerebral blood flow and brain energy metabolism. Laptook AR; Hassan A; Peterson J; Corbett RJ; Nunnally RL NMR Biomed; 1988 Apr; 1(2):74-9. PubMed ID: 3275028 [TBL] [Abstract][Full Text] [Related]
9. Reversal and prevention of cerebral vasospasm by intracarotid infusions of nitric oxide donors in a primate model of subarachnoid hemorrhage. Pluta RM; Oldfield EH; Boock RJ J Neurosurg; 1997 Nov; 87(5):746-51. PubMed ID: 9347984 [TBL] [Abstract][Full Text] [Related]
10. Sequential in vivo measurement of cerebral intracellular metabolites with phosphorus-31 magnetic resonance spectroscopy during global cerebral ischemia and reperfusion in rats. Andrews BT; Weinstein PR; Keniry M; Pereira B Neurosurgery; 1987 Nov; 21(5):699-708. PubMed ID: 3696405 [TBL] [Abstract][Full Text] [Related]
12. Cerebral blood flow autoregulation following subarachnoid hemorrhage in rats: chronic vasospasm shifts the upper and lower limits of the autoregulatory range toward higher blood pressures. Yamamoto S; Nishizawa S; Tsukada H; Kakiuchi T; Yokoyama T; Ryu H; Uemura K Brain Res; 1998 Jan; 782(1-2):194-201. PubMed ID: 9519263 [TBL] [Abstract][Full Text] [Related]
13. Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study. Braun KP; van Eijsden P; Vandertop WP; de Graaf RA; Gooskens RH; Tulleken KA; Nicolay K J Neurosurg; 1999 Oct; 91(4):660-8. PubMed ID: 10507389 [TBL] [Abstract][Full Text] [Related]
14. In vivo studies of energy metabolism in experimental cerebral ischemia using topical magnetic resonance. Changes in 31P-nuclear magnetic resonance spectra compared with electroencephalograms and regional cerebral blood flow. Horikawa Y; Naruse S; Hirakawa K; Tanaka C; Nishikawa H; Watari H J Cereb Blood Flow Metab; 1985 Jun; 5(2):235-40. PubMed ID: 3988822 [TBL] [Abstract][Full Text] [Related]
15. Blood-brain barrier disruption caused by impairment of cerebral autoregulation during chronic cerebral vasospasm in primates. Handa Y; Takeuchi H; Kabuto M; Kobayashi H; Kawano H; Hosotani K; Hayashi M Acta Neurochir Suppl (Wien); 1990; 51():338-40. PubMed ID: 2089931 [TBL] [Abstract][Full Text] [Related]
16. Human focal cerebral ischemia: evaluation of brain pH and energy metabolism with P-31 NMR spectroscopy. Levine SR; Helpern JA; Welch KM; Vande Linde AM; Sawaya KL; Brown EE; Ramadan NM; Deveshwar RK; Ordidge RJ Radiology; 1992 Nov; 185(2):537-44. PubMed ID: 1410369 [TBL] [Abstract][Full Text] [Related]
17. [Influence of combined moderate arterial hypoxaemia and moderate hypovolaemic hypotension on cerebral blood flow and cerebral oxidative and energy metabolism in the dog (author's transl)]. Wiedemann K; Weinhardt F; Hamer J; Wund G; Berlet H; Hoyer S Anaesthesist; 1979 Jun; 28(6):290-8. PubMed ID: 37772 [TBL] [Abstract][Full Text] [Related]
18. Effects of profound hypotension on cerebral blood flow during surgery for intracranial aneurysms. Farrar JK; Gamache FW; Ferguson GG; Barker J; Varkey GP; Drake CG J Neurosurg; 1981 Dec; 55(6):857-64. PubMed ID: 7299461 [TBL] [Abstract][Full Text] [Related]
19. Cerebral energy metabolism measured in vivo by 31P-NMR in middle cerebral artery occlusion in the cat--relation to severity of stroke. Komatsumoto S; Nioka S; Greenberg JH; Yoshizaki K; Subramanian VH; Chance B; Reivich M J Cereb Blood Flow Metab; 1987 Oct; 7(5):557-62. PubMed ID: 3654795 [TBL] [Abstract][Full Text] [Related]
20. Effects of propentofylline on energy metabolism of the ischemic brain studied by in vivo 31P nuclear magnetic resonance spectroscopy. Sasaki M; Naritomi H; Kanashiro M; Nishimura H; Sawada T Arzneimittelforschung; 1989 Aug; 39(8):886-9. PubMed ID: 2510744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]