These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 8416376)

  • 1. Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations.
    Vincent KA; Ellison V; Chow SA; Brown PO
    J Virol; 1993 Jan; 67(1):425-37. PubMed ID: 8416376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Juxtaposition of two viral DNA ends in a bimolecular disintegration reaction mediated by multimers of human immunodeficiency virus type 1 or murine leukemia virus integrase.
    Chow SA; Brown PO
    J Virol; 1994 Dec; 68(12):7869-78. PubMed ID: 7966577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An essential interaction between distinct domains of HIV-1 integrase mediates assembly of the active multimer.
    Ellison V; Gerton J; Vincent KA; Brown PO
    J Biol Chem; 1995 Feb; 270(7):3320-6. PubMed ID: 7852418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain.
    Masuda T; Planelles V; Krogstad P; Chen IS
    J Virol; 1995 Nov; 69(11):6687-96. PubMed ID: 7474078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed integration of viral DNA mediated by fusion proteins consisting of human immunodeficiency virus type 1 integrase and Escherichia coli LexA protein.
    Goulaouic H; Chow SA
    J Virol; 1996 Jan; 70(1):37-46. PubMed ID: 8523550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro.
    Leavitt AD; Shiue L; Varmus HE
    J Biol Chem; 1993 Jan; 268(3):2113-9. PubMed ID: 8420982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the His-Cys finger of Moloney murine leukemia virus integrase protein in integration and disintegration.
    Jonsson CB; Roth MJ
    J Virol; 1993 Sep; 67(9):5562-71. PubMed ID: 8350412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping domains of retroviral integrase responsible for viral DNA specificity and target site selection by analysis of chimeras between human immunodeficiency virus type 1 and visna virus integrases.
    Katzman M; Sudol M
    J Virol; 1995 Sep; 69(9):5687-96. PubMed ID: 7637015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1.
    Pahl A; Flügel RM
    J Biol Chem; 1995 Feb; 270(7):2957-66. PubMed ID: 7852375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rous sarcoma virus integrase protein: mapping functions for catalysis and substrate binding.
    Bushman FD; Wang B
    J Virol; 1994 Apr; 68(4):2215-23. PubMed ID: 8139006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae.
    Leavitt AD; Rose RB; Varmus HE
    J Virol; 1992 Apr; 66(4):2359-68. PubMed ID: 1548767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro.
    Engelman A; Craigie R
    J Virol; 1992 Nov; 66(11):6361-9. PubMed ID: 1404595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates.
    Chow SA; Brown PO
    J Virol; 1994 Jun; 68(6):3896-907. PubMed ID: 8189526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrase mutants of human immunodeficiency virus type 1 with a specific defect in integration.
    Taddeo B; Haseltine WA; Farnet CM
    J Virol; 1994 Dec; 68(12):8401-5. PubMed ID: 7966634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of the human immunodeficiency virus type 1 integrase protein.
    Shin CG; Taddeo B; Haseltine WA; Farnet CM
    J Virol; 1994 Mar; 68(3):1633-42. PubMed ID: 8107224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of recombinant human immunodeficiency virus integrase protein.
    LaFemina RL; Callahan PL; Cordingley MG
    J Virol; 1991 Oct; 65(10):5624-30. PubMed ID: 1895409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA substrate requirements for different activities of the human immunodeficiency virus type 1 integrase protein.
    van den Ent FM; Vink C; Plasterk RH
    J Virol; 1994 Dec; 68(12):7825-32. PubMed ID: 7966572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage.
    Vink C; van Gent DC; Elgersma Y; Plasterk RH
    J Virol; 1991 Sep; 65(9):4636-44. PubMed ID: 1870194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions.
    Sherman PA; Dickson ML; Fyfe JA
    J Virol; 1992 Jun; 66(6):3593-601. PubMed ID: 1374809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells.
    Wiskerchen M; Muesing MA
    J Virol; 1995 Jan; 69(1):376-86. PubMed ID: 7983732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.