These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8416870)
1. Modeling of normal tissue response to radiation: the critical volume model. Niemierko A; Goitein M Int J Radiat Oncol Biol Phys; 1993 Jan; 25(1):135-45. PubMed ID: 8416870 [TBL] [Abstract][Full Text] [Related]
2. Radiotoxic model for three-dimensional treatment planning. Part 1: Theoretical basis. Caudry M; Causse N; Trouette R; Récaldini L; Maire JP; Demeaux H Int J Radiat Oncol Biol Phys; 1993 Apr; 25(5):907-19. PubMed ID: 8478243 [TBL] [Abstract][Full Text] [Related]
3. EUD-based biological optimization for carbon ion therapy. Brüningk SC; Kamp F; Wilkens JJ Med Phys; 2015 Nov; 42(11):6248-57. PubMed ID: 26520717 [TBL] [Abstract][Full Text] [Related]
4. A numerical simulation of organ motion and daily setup uncertainties: implications for radiation therapy. Killoran JH; Kooy HM; Gladstone DJ; Welte FJ; Beard CJ Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):213-21. PubMed ID: 9054898 [TBL] [Abstract][Full Text] [Related]
5. Prediction of chronic kidney disease in abdominal cancers radiation therapy using the functional assays of normal tissue complication probability models. Haghbin A; Mostaar A; Paydar R; Bakhshandeh M; Nikoofar A; Houshyari M; Cheraghi S J Cancer Res Ther; 2022; 18(3):718-724. PubMed ID: 35900545 [TBL] [Abstract][Full Text] [Related]
6. Prediction of radiation-induced normal tissue complications in radiotherapy using functional image data. Nioutsikou E; Partridge M; Bedford JL; Webb S Phys Med Biol; 2005 Mar; 50(6):1035-46. PubMed ID: 15798307 [TBL] [Abstract][Full Text] [Related]
7. Using percolation networks to incorporate spatial-dose information for assessment of complication probability in radiotherapy. Gale N; House M; Ebert MA Australas Phys Eng Sci Med; 2017 Dec; 40(4):869-880. PubMed ID: 29199375 [TBL] [Abstract][Full Text] [Related]
8. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Jackson A; Ten Haken RK; Robertson JM; Kessler ML; Kutcher GJ; Lawrence TS Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):883-91. PubMed ID: 7860402 [TBL] [Abstract][Full Text] [Related]
9. A study of objective functions for organs with parallel and serial architecture. Stavrev PV; Stavreva NA; Round WH Australas Phys Eng Sci Med; 1997 Mar; 20(1):4-10. PubMed ID: 9141307 [TBL] [Abstract][Full Text] [Related]
10. Response-probability volume histograms and iso-probability of response charts in treatment plan evaluation. Mavroidis P; Ferreira BC; Lopes Mdo C Med Phys; 2011 May; 38(5):2382-97. PubMed ID: 21776773 [TBL] [Abstract][Full Text] [Related]
11. A simple method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation. Begnozzi L; Gentile FP; Di Nallo AM; Chiatti L; Zicari C; Consorti R; Benassi M Strahlenther Onkol; 1994 Oct; 170(10):590-4. PubMed ID: 7974170 [TBL] [Abstract][Full Text] [Related]
12. Temporally feathered intensity-modulated radiation therapy: A planning technique to reduce normal tissue toxicity. López Alfonso JC; Parsai S; Joshi N; Godley A; Shah C; Koyfman SA; Caudell JJ; Fuller CD; Enderling H; Scott JG Med Phys; 2018 Jul; 45(7):3466-3474. PubMed ID: 29786861 [TBL] [Abstract][Full Text] [Related]
13. Coverage optimized planning: probabilistic treatment planning based on dose coverage histogram criteria. Gordon JJ; Sayah N; Weiss E; Siebers JV Med Phys; 2010 Feb; 37(2):550-63. PubMed ID: 20229863 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic simulation of normal-tissue damage in radiotherapy--implications for dose-volume analyses. Rutkowska E; Baker C; Nahum A Phys Med Biol; 2010 Apr; 55(8):2121-36. PubMed ID: 20305336 [TBL] [Abstract][Full Text] [Related]
15. Dosimetric comparison between 2-dimensional radiation therapy and intensity modulated radiation therapy in treatment of advanced T-stage nasopharyngeal carcinoma: to treat less or more in the planning organ-at-risk volume of the brainstem and spinal cord. Chau RM; Teo PM; Kam MK; Leung SF; Cheung KY; Chan AT Med Dosim; 2007; 32(4):263-70. PubMed ID: 17980826 [TBL] [Abstract][Full Text] [Related]
16. Calculation of radiation induced complication probabilities for brain, liver and kidney, and the use of a reliability model to estimate critical volume fractions. Olsen DR; Kambestad BK; Kristoffersen DT Br J Radiol; 1994 Dec; 67(804):1218-25. PubMed ID: 7874421 [TBL] [Abstract][Full Text] [Related]
17. [Assessment of radiotherapy plans: dose-volume histograms, integral effects and tumor control]. Bleher M; Bratengeier K; Richter J Strahlenther Onkol; 1991 Apr; 167(4):220-6. PubMed ID: 2028399 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the influence of setup uncertainties on treatment planning for focal liver tumors. Balter JM; Brock KK; Lam KL; Tatro D; Dawson LA; McShan DL; Ten Haken RK Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):610-4. PubMed ID: 16095848 [TBL] [Abstract][Full Text] [Related]
19. Probability of radiation-induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation. Yorke ED; Kutcher GJ; Jackson A; Ling CC Radiother Oncol; 1993 Mar; 26(3):226-37. PubMed ID: 8316652 [TBL] [Abstract][Full Text] [Related]
20. Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Jackson A; Kutcher GJ; Yorke ED Med Phys; 1993; 20(3):613-25. PubMed ID: 8350812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]