BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 8416899)

  • 1. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.
    Tubulekas I; Hughes D
    J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutants of EF-Tu defective in binding aminoacyl-tRNA.
    Abdulkarim F; Ehrenberg M; Hughes D
    FEBS Lett; 1996 Mar; 382(3):297-303. PubMed ID: 8605989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis.
    Thompson RC; Dix DB; Karim AM
    J Biol Chem; 1986 Apr; 261(11):4868-74. PubMed ID: 3514605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome.
    Rodnina MV; Fricke R; Kuhn L; Wintermeyer W
    EMBO J; 1995 Jun; 14(11):2613-9. PubMed ID: 7781613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study.
    Dell VA; Miller DL; Johnson AE
    Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Elongation factor EF-Ts interacts with the aminoacyl-tRNA.EF-Tu.GTP complex].
    Kireeva ML; Bubunenko MG; Bushueva TL
    Mol Biol (Mosk); 1992; 26(1):104-9. PubMed ID: 1508161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.
    Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B
    J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutant elongation factor Tu which does not immobilize the ribosome upon binding of kirromycin.
    Duisterwinkel FJ; De Graaf JM; Schretlen PJ; Kraal B; Bosch L
    Eur J Biochem; 1981 Jun; 117(1):7-12. PubMed ID: 7021158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interface between Escherichia coli elongation factor Tu and aminoacyl-tRNA.
    Yikilmaz E; Chapman SJ; Schrader JM; Uhlenbeck OC
    Biochemistry; 2014 Sep; 53(35):5710-20. PubMed ID: 25094027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection.
    Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of animal mitochondrial EF-Tu.EF-Ts with aminoacyl-tRNA, guanine nucleotides, and ribosomes.
    Schwartzbach CJ; Spremulli LL
    J Biol Chem; 1991 Sep; 266(25):16324-30. PubMed ID: 1885567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of the universally conserved 3'-CCA end of tRNA by elongation factor EF-Tu.
    Liu JC; Liu M; Horowitz J
    RNA; 1998 Jun; 4(6):639-46. PubMed ID: 9622123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The elongation factor Tu from Escherichia coli, aminoacyl-tRNA, and guanosine tetraphosphate form a ternary complex which is bound by programmed ribosomes.
    Pingoud A; Gast FU; Block W; Peters F
    J Biol Chem; 1983 Dec; 258(23):14200-5. PubMed ID: 6358217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant EF-Tu species reveal novel features of the enacyloxin IIa inhibition mechanism on the ribosome.
    Zuurmond AM; Olsthoorn-Tieleman LN; Martien de Graaf J; Parmeggiani A; Kraal B
    J Mol Biol; 1999 Dec; 294(3):627-37. PubMed ID: 10610785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.