These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8416912)

  • 1. Effect of glpT and glpD mutations on expression of the phoA gene in Escherichia coli.
    Rao NN; Roberts MF; Torriani A; Yashphe J
    J Bacteriol; 1993 Jan; 175(1):74-9. PubMed ID: 8416912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis.
    Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N
    J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription of glpT of Escherichia coli K12 is regulated by anaerobiosis and fnr.
    Wong KK; Kwan HS
    FEMS Microbiol Lett; 1992 Jul; 73(1-2):15-8. PubMed ID: 1521763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pho regulon-dependent Ugp uptake system for glycerol-3-phosphate in Escherichia coli is trans inhibited by Pi.
    Brzoska P; Rimmele M; Brzostek K; Boos W
    J Bacteriol; 1994 Jan; 176(1):15-20. PubMed ID: 8282692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli.
    Haardt M; Bremer E
    J Bacteriol; 1996 Sep; 178(18):5370-81. PubMed ID: 8808924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transmembrane topology of the sn-glycerol-3-phosphate permease of Escherichia coli analysed by phoA and lacZ protein fusions.
    Gött P; Boos W
    Mol Microbiol; 1988 Sep; 2(5):655-63. PubMed ID: 3141744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum beta-lactamase genes cloned from a natural isolate and a high-level beta-lactamase producer.
    Timm J; Perilli MG; Duez C; Trias J; Orefici G; Fattorini L; Amicosante G; Oratore A; Joris B; Frère JM
    Mol Microbiol; 1994 May; 12(3):491-504. PubMed ID: 8065266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of transposon TnphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: the periplasmic protein Tsp potentiates long-chain fatty acid transport.
    Azizan A; Black PN
    J Bacteriol; 1994 Nov; 176(21):6653-62. PubMed ID: 7961418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro construction and characterization of phoA-lacZ gene fusions in Escherichia coli.
    Michaelis S; Guarente L; Beckwith J
    J Bacteriol; 1983 Apr; 154(1):356-65. PubMed ID: 6403507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli.
    Michaelis S; Inouye H; Oliver D; Beckwith J
    J Bacteriol; 1983 Apr; 154(1):366-74. PubMed ID: 6339478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THE BIOSYNTHESIS OF ALKALINE PHOSPHATASE WITH A PARTICULATE FRACTION OF ESCHERICHIA COLI.
    MANSON LA; PELMONT J; YAPO A; ROCHE C; NISMAN B
    Biochem J; 1965 Apr; 95(1):215-25. PubMed ID: 14333560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12.
    Wanner BL
    J Mol Biol; 1986 Sep; 191(1):39-58. PubMed ID: 3540312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overlapping and separate controls on the phosphate regulon in Escherichia coli K12.
    Wanner BL
    J Mol Biol; 1983 May; 166(3):283-308. PubMed ID: 6304324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmoregulation of alkaline phosphatase synthesis in Escherichia coli K-12.
    Villarejo M; Davis JL; Granett S
    J Bacteriol; 1983 Nov; 156(2):975-8. PubMed ID: 6415046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sphR product, a two-component system response regulator protein, regulates phosphate assimilation in Synechococcus sp. strain PCC 7942 by binding to two sites upstream from the phoA promoter.
    Nagaya M; Aiba H; Mizuno T
    J Bacteriol; 1994 Apr; 176(8):2210-5. PubMed ID: 8157591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and expression in Escherichia coli of a phoA gene encoding a phosphate-irrepressible alkaline phosphatase of Zymomonas mobilis.
    Michel GP; Alvarez E; Guzzo J; Cami B; Baratti J
    FEMS Microbiol Lett; 1992 Nov; 77(1-3):103-8. PubMed ID: 1459397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that TET protein functions as a multimer in the inner membrane of Escherichia coli.
    Hickman RK; Levy SB
    J Bacteriol; 1988 Apr; 170(4):1715-20. PubMed ID: 3280550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Bacillus subtilis glpD leader and antiterminator protein GlpP provide a target for glucose repression in Escherichia coli.
    Glatz E; Farewell A; Rutberg B
    FEMS Microbiol Lett; 1998 May; 162(1):93-6. PubMed ID: 9595668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization by Escherichia coli of a high-molecular-weight, linear polyphosphate: roles of phosphatases and pore proteins.
    Rao NN; Torriani A
    J Bacteriol; 1988 Nov; 170(11):5216-23. PubMed ID: 3053651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.