BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8416933)

  • 1. Labeling of cysteine 231 in acetylcholinesterase from Torpedo nobiliana by the active-site directed reagent, 1-bromo-2-[14C] pinacolone. Effects of 2,2'-dipyridyl disulfide and other sulfhydryl reagents.
    Salih E; Howard S; Chishti SB; Cohen SG; Liu WS; Cohen JB
    J Biol Chem; 1993 Jan; 268(1):245-51. PubMed ID: 8416933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of 1-bromo-2-[14C]pinacolone with acetylcholinesterase from Torpedo nobiliana. Effects of 5-trimethylammonio-2-pentanone and diisopropyl fluorophosphate.
    Cohen SG; Salih E; Solomon M; Howard S; Chishti SB; Cohen JB
    Biochim Biophys Acta; 1989 Aug; 997(3):167-75. PubMed ID: 2765553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active-site peptides of acetylcholinesterase of Electrophorus electricus: labelling of His-440 by 1-bromo-[2-14C]pinacolone and Ser-200 by tritiated diisopropyl fluorophosphate.
    Salih E; Chishti SB; Vicedomine P; Cohen SG; Chiara DC; Cohen JB
    Biochim Biophys Acta; 1994 Oct; 1208(2):324-31. PubMed ID: 7947965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1-Bromopinacolone, an active site-directed covalent inhibitor for acetylcholinesterase.
    Cohen SG; Lieberman DL; Hasan FB; Cohen JB
    J Biol Chem; 1982 Dec; 257(23):14087-92. PubMed ID: 7142196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,2'-Bispyridyl disulfide rapidly induces intramolecular disulfide bonds in peptides.
    Maruyama K; Nagasawa H; Suzuki A
    Peptides; 1999; 20(7):881-4. PubMed ID: 10477090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of acetylcholinesterase with the fluorescent thiol reagent S-mercuric-N-dansylcysteine.
    Mutus B; Duncan DV; Tomlinson G
    Biochem Biophys Res Commun; 1983 May; 112(3):941-7. PubMed ID: 6847689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of polymerization and conformation of hemoglobin S induced by thiol reagents.
    Garel MC; Caburi-Martin J; Domenget C; Kister J; Craescu CT; Poyart C; Beuzard Y
    Biochim Biophys Acta; 1990 Nov; 1041(2):133-40. PubMed ID: 2265199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profile of the disulfide bonds in acetylcholinesterase.
    MacPhee-Quigley K; Vedvick TS; Taylor P; Taylor SS
    J Biol Chem; 1986 Oct; 261(29):13565-70. PubMed ID: 3759980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of the essential thiol of Klebsiella aerogenes urease. Effect of pH and ligands on thiol modification.
    Todd MJ; Hausinger RP
    J Biol Chem; 1991 Jun; 266(16):10260-7. PubMed ID: 2037578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of papaya peptidase A as a cysteine proteinase of Carica papaya L. with active-centre properties that differ from those of papain by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes. Use of two-protonic-state electrophiles in the identification of catalytic-site thiol groups.
    Baines BS; Brocklehurst K
    Biochem J; 1982 Jul; 205(1):205-11. PubMed ID: 6751321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trp279 is involved in the binding of quaternary ammonium at the peripheral site of Torpedo marmorata acetylcholinesterase.
    Schalk I; Ehret-Sabatier L; Bouet F; Goeldner M; Hirth C
    Eur J Biochem; 1994 Jan; 219(1-2):155-9. PubMed ID: 8306982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anionic subsites of the catalytic center of acetylcholinesterase from Torpedo and from cobra venom.
    Kreienkamp HJ; Weise C; Raba R; Aaviksaar A; Hucho F
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6117-21. PubMed ID: 2068091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of hemerythrin with disulfides.
    Harrington PC; Wilkins RG
    Biochemistry; 1985 Jan; 24(1):210-4. PubMed ID: 3994968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate of thermal inactivation of Torpedo acetylcholinesterase is not reduced in the C231S mutant.
    Wilson EJ; Massoulié J; Bon S; Rosenberry TL
    FEBS Lett; 1996 Jan; 379(2):161-4. PubMed ID: 8635584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites, mechanism of action and lack of reversibility of primate lentivirus inactivation by preferential covalent modification of virion internal proteins.
    Chertova E; Crise BJ; Morcock DR; Bess JW; Henderson LE; Lifson JD
    Curr Mol Med; 2003 May; 3(3):265-72. PubMed ID: 12699362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)-release channels from sheep myocardium.
    Eager KR; Roden LD; Dulhunty AF
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C1908-18. PubMed ID: 9227420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of homogeneous magnetic fields on responses to toxic stimulation in Spirostomum ambiguum.
    Ripamonti A; Ettienne EM; Frankel RB
    Bioelectromagnetics; 1981; 2(2):187-98. PubMed ID: 7295365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location of disulfide bonds within the sequence of human serum cholinesterase.
    Lockridge O; Adkins S; La Du BN
    J Biol Chem; 1987 Sep; 262(27):12945-52. PubMed ID: 3115973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase. A comparison of NH2-terminal and active center sequences.
    MacPhee-Quigley K; Taylor P; Taylor S
    J Biol Chem; 1985 Oct; 260(22):12185-9. PubMed ID: 3900071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two partially unfolded states of Torpedo californica acetylcholinesterase.
    Kreimer DI; Shin I; Shnyrov VL; Villar E; Silman I; Weiner L
    Protein Sci; 1996 Sep; 5(9):1852-64. PubMed ID: 8880909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.