BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8416933)

  • 21. Coenzyme dependent suppression of 2,2-PDS induced contractures in Spirostomum.
    Levine MA; Ettienne EM
    Microbios; 1978; 20(80):81-93. PubMed ID: 153442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A "molten globule" of Torpedo acetylcholinesterase undergoes thiol-disulfide exchange.
    Eichler J; Kreimer DI; Varon L; Silman I; Weiner L
    J Biol Chem; 1994 Dec; 269(48):30093-6. PubMed ID: 7982909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reaction of S-mercuric-N-dansylcysteine with acetylcholinesterase and butyrylcholinesterase.
    Tomlinson G; Kinsch EM
    Biochem Cell Biol; 1989 Jul; 67(7):337-44. PubMed ID: 2789787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of an essential cysteine residue in pyridoxal phosphatase from human erythrocytes.
    Gao G; Fonda ML
    J Biol Chem; 1994 Mar; 269(11):8234-9. PubMed ID: 8132548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and identification of cysteinyl peptide labeled by 6- [( 4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate in the reduced diphosphopyridine nucleotide inhibitory site of glutamate dehydrogenase.
    Batra SP; Colman RF
    Biochemistry; 1986 Jun; 25(12):3508-15. PubMed ID: 3718940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective labeling of anionic binding sites of the acetylcholinesterase from Torpedo californica with a photoaffinity label.
    Layer P; Kiefer HR; Hucho F
    Mol Pharmacol; 1976 Nov; 12(6):958-65. PubMed ID: 1004492
    [No Abstract]   [Full Text] [Related]  

  • 27. Anionic subsites of the acetylcholinesterase from Torpedo californica: affinity labelling with the cationic reagent N,N-dimethyl-2-phenyl-aziridinium.
    Weise C; Kreienkamp HJ; Raba R; Pedak A; Aaviksaar A; Hucho F
    EMBO J; 1990 Dec; 9(12):3885-8. PubMed ID: 2249655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction between sheep liver mitochondrial aldehyde dehydrogenase and various thiol-modifying reagents.
    Loomes KM; Kitson TM
    Biochem J; 1989 Jul; 261(1):281-4. PubMed ID: 2775216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple oxidation products of sulfhydryl groups near the active site of thiolase I from porcine heart.
    Izbicka-Dimitrijević E; Gilbert HF
    Biochemistry; 1984 Sep; 23(19):4318-24. PubMed ID: 6148962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2,2'-Dithiodipyridine activates aldehyde dehydrogenase and protects the enzyme against inactivation by disulfiram.
    Kitson TM
    Biochem J; 1979 Dec; 183(3):751-3. PubMed ID: 540042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactive disulfide compounds induce Ca2+ release from cardiac sarcoplasmic reticulum.
    Prabhu SD; Salama G
    Arch Biochem Biophys; 1990 Nov; 282(2):275-83. PubMed ID: 2146921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The reaction of choline acetyltransferase with sulfhydryl reagents. Methoxycarbonyl-CoA disulfide as an active site-directed reagent.
    Hersh LB; Nair RV; Smith DJ
    J Biol Chem; 1979 Dec; 254(23):11988-92. PubMed ID: 500688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and properties of mitochondrial monoamine oxidase type A from human placenta.
    Weyler W; Salach JI
    J Biol Chem; 1985 Oct; 260(24):13199-207. PubMed ID: 3932340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases.
    Saxena A; Qian N; Kovach IM; Kozikowski AP; Pang YP; Vellom DC; Radić Z; Quinn D; Taylor P; Doctor BP
    Protein Sci; 1994 Oct; 3(10):1770-8. PubMed ID: 7849595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cysteine 254 can cooperate with active site cysteine 247 in reactivation of 5,5'-dithiobis(2-nitrobenzoic acid)-inactivated rhodanese as determined by site-directed mutagenesis.
    Miller-Martini DM; Hua S; Horowitz PM
    J Biol Chem; 1994 Apr; 269(17):12414-8. PubMed ID: 8175646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of rate constants for the irreversible inhibition of acetylcholine esterase by continuously monitoring the substrate reaction in the presence of the inhibitor.
    Liu W; Tsou CL
    Biochim Biophys Acta; 1986 Mar; 870(2):185-90. PubMed ID: 3955054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Posterino GS; Lamb GD
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):809-25. PubMed ID: 8930846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the benzomorphan opiate binding site on the catalytic subunit of acetylcholinesterase.
    Coleman BA; Oswald RE
    Mol Pharmacol; 1993 Feb; 43(2):217-25. PubMed ID: 8381509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reactions of Escherichia coli citrate synthase with the sulfhydryl reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and 4,4'-dithiodipyridine.
    Talgoy MM; Bell AW; Duckworth HW
    Can J Biochem; 1979 Jun; 57(6):822-33. PubMed ID: 38891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.