These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8416948)
1. DNase I and micrococcal nuclease analysis of the tomato proteinase inhibitor I gene in chromatin. Conconi A; Ryan CA J Biol Chem; 1993 Jan; 268(1):430-5. PubMed ID: 8416948 [TBL] [Abstract][Full Text] [Related]
2. Nutritional regulation of nucleosomal structure at the chicken malic enzyme promoter in liver. Ma XJ; Goodridge AG Nucleic Acids Res; 1992 Oct; 20(19):4997-5002. PubMed ID: 1408817 [TBL] [Abstract][Full Text] [Related]
3. Chromatin structure of the chicken beta-globin gene region. Sensitivity to DNase I, micrococcal nuclease, and DNase II. Wood WI; Felsenfeld G J Biol Chem; 1982 Jul; 257(13):7730-6. PubMed ID: 6282852 [TBL] [Abstract][Full Text] [Related]
4. [Structural and functional chromatin organization of the SUP35 gene in Saccharomyces cerevisiae yeast]. Riabinkova NA; Vodop'ianova LG; Samsonova MG; Miasikova EM; Osipova TN Genetika; 1997 Apr; 33(4):451-7. PubMed ID: 9206662 [TBL] [Abstract][Full Text] [Related]
5. A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5'-flanking region of the actively transcribed ovalbumin gene. Kaye JS; Bellard M; Dretzen G; Bellard F; Chambon P EMBO J; 1984 May; 3(5):1137-44. PubMed ID: 6329739 [TBL] [Abstract][Full Text] [Related]
6. Chromatin remodelling of the cardiac beta-myosin heavy chain gene. Huang WY; Liew CC Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):871-6. PubMed ID: 9480903 [TBL] [Abstract][Full Text] [Related]
7. Enrichment of ubiquitinated histone H2A in a low salt extract of micrococcal nuclease-digested myotube nuclei. Parlow MH; Haas AL; Lough J J Biol Chem; 1990 May; 265(13):7507-12. PubMed ID: 2159002 [TBL] [Abstract][Full Text] [Related]
8. DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific. Levy-Wilson B; Fortier C; Blackhart BD; McCarthy BJ Mol Cell Biol; 1988 Jan; 8(1):71-80. PubMed ID: 3336367 [TBL] [Abstract][Full Text] [Related]
9. The chromatin structure of the human epsilon globin gene: nuclease hypersensitive sites correlate with multiple initiation sites of transcription. Zhu J; Allan M; Paul J Nucleic Acids Res; 1984 Dec; 12(23):9191-204. PubMed ID: 6096822 [TBL] [Abstract][Full Text] [Related]
10. Reduced repeat length of nascent nucleosomal DNA is generated by replicating chromatin in vivo. Jakob KM; Ben Yosef S; Tal I Nucleic Acids Res; 1984 Jun; 12(12):5015-24. PubMed ID: 6739296 [TBL] [Abstract][Full Text] [Related]
11. Structure of the extrachromosomal ribosomal RNA chromatin of Physarum polycephalum. Lucchini R; Pauli U; Braun R; Koller T; Sogo JM J Mol Biol; 1987 Aug; 196(4):829-43. PubMed ID: 3681980 [TBL] [Abstract][Full Text] [Related]
12. Nuclease sensitivity of active chromatin. Gazit B; Cedar H Nucleic Acids Res; 1980 Nov; 8(22):5143-55. PubMed ID: 6258137 [TBL] [Abstract][Full Text] [Related]
13. Tissue-specific and periodic changes in the nuclease sensitivity of the fibroin gene chromatin in the silkworm Bombyx mori. Kondo K; Aoshima Y; Hagiwara T; Ueda H; Mizuno S J Biol Chem; 1987 Apr; 262(11):5271-9. PubMed ID: 3031047 [TBL] [Abstract][Full Text] [Related]
14. Digestion of the chicken beta-globin gene chromatin with micrococcal nuclease reveals the presence of an altered nucleosomal array characterized by an atypical ladder of DNA fragments. Sun YL; Xu YZ; Bellard M; Chambon P EMBO J; 1986 Feb; 5(2):293-300. PubMed ID: 3011400 [TBL] [Abstract][Full Text] [Related]
15. Digestion by micrococcal nuclease of mouse submandibular-salivary-gland chromatin. Smith GJ; Rowlatt C Biochem J; 1980 May; 187(2):353-60. PubMed ID: 7396853 [TBL] [Abstract][Full Text] [Related]
16. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer. Längst G; Schätz T; Langowski J; Grummt I Nucleic Acids Res; 1997 Feb; 25(3):511-7. PubMed ID: 9016589 [TBL] [Abstract][Full Text] [Related]
17. Subnuclear fractionation by mild micrococcal-nuclease treatment of nuclei of different transcriptional activities causes a partition of expressed and non-expressed genes. Dimitriadis GJ; Tata JR Biochem J; 1980 May; 187(2):467-77. PubMed ID: 6156673 [TBL] [Abstract][Full Text] [Related]
18. Changes in chromatin structure at the replication fork. DNase I and trypsin-micrococcal nuclease effects on approximately 300- and 150-base pair nascent DNAs. Galili G; Levy A; Jakob KM J Biol Chem; 1983 Sep; 258(18):11274-9. PubMed ID: 6224796 [TBL] [Abstract][Full Text] [Related]
19. Chromatin structure of the 5' flanking region of the yeast LEU2 gene. Martínez-García JF; Estruch F; Pérez-Ortín JE Mol Gen Genet; 1989 Jun; 217(2-3):464-70. PubMed ID: 10215493 [TBL] [Abstract][Full Text] [Related]
20. Nuclease digestion of transcriptionally active chromatin. Bellard M; Dretzen G; Giangrande A; Ramain P Methods Enzymol; 1989; 170():317-46. PubMed ID: 2770544 [No Abstract] [Full Text] [Related] [Next] [New Search]