BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8417003)

  • 1. Spectral analysis of dynamic PET studies.
    Cunningham VJ; Jones T
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):15-23. PubMed ID: 8417003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral analysis: principle and clinical applications.
    Murase K
    Ann Nucl Med; 2003 Sep; 17(6):427-34. PubMed ID: 14575374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of assumptions for local cerebral blood flow studies in PET.
    Koeppe RA; Hutchins GD; Rothley JM; Hichwa RD
    J Nucl Med; 1987 Nov; 28(11):1695-703. PubMed ID: 3499491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling.
    Gunn RN; Gunn SR; Turkheimer FE; Aston JA; Cunningham VJ
    J Cereb Blood Flow Metab; 2002 Dec; 22(12):1425-39. PubMed ID: 12468888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positron emission tomography compartmental models.
    Gunn RN; Gunn SR; Cunningham VJ
    J Cereb Blood Flow Metab; 2001 Jun; 21(6):635-52. PubMed ID: 11488533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET.
    Yokoi T; Iida H; Itoh H; Kanno I
    J Nucl Med; 1993 Mar; 34(3):498-505. PubMed ID: 8441045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model dependency and estimation reliability in measurement of cerebral oxygen utilization rate with oxygen-15 and dynamic positron emission tomography.
    Huang SC; Feng DG; Phelps ME
    J Cereb Blood Flow Metab; 1986 Feb; 6(1):105-19. PubMed ID: 3484744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method.
    Kudomi N; Watabe H; Hayashi T; Iida H
    Phys Med Biol; 2007 Apr; 52(7):1893-908. PubMed ID: 17374918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Which linear compartmental systems can be analyzed by spectral analysis of PET output data summed over all compartments?
    Schmidt K
    J Cereb Blood Flow Metab; 1999 May; 19(5):560-9. PubMed ID: 10326723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consolidation of common parameters from multiple fits in dynamic PET data analysis.
    Huesman RH; Coxson PG
    IEEE Trans Med Imaging; 1997 Oct; 16(5):675-83. PubMed ID: 9368123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis.
    Ingvar M; Eriksson L; Rogers GA; Stone-Elander S; Widén L
    J Cereb Blood Flow Metab; 1991 Nov; 11(6):926-31. PubMed ID: 1939386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of regional flow by use of intravascular PET tracers: microvascular theory and experimental validation for pig livers.
    Munk OL; Bass L; Feng H; Keiding S
    J Nucl Med; 2003 Nov; 44(11):1862-70. PubMed ID: 14602871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve.
    Takikawa S; Dhawan V; Spetsieris P; Robeson W; Chaly T; Dahl R; Margouleff D; Eidelberg D
    Radiology; 1993 Jul; 188(1):131-6. PubMed ID: 8511286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of local cerebral blood flow and metabolism in man with positron emission tomography.
    Raichle ME
    Fed Proc; 1981 Jun; 40(8):2331-4. PubMed ID: 6972328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using (18)F-FDG PET: application to focal cerebral ischemia.
    Backes H; Walberer M; Endepols H; Neumaier B; Graf R; Wienhard K; Mies G
    J Nucl Med; 2011 Aug; 52(8):1252-60. PubMed ID: 21764786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAKE: a new quantification tool for positron emission tomography studies.
    Veronese M; Rizzo G; Turkheimer FE; Bertoldo A
    Comput Methods Programs Biomed; 2013 Jul; 111(1):199-213. PubMed ID: 23611334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic images from dynamic positron emission tomography studies.
    O'Sullivan F
    Stat Methods Med Res; 1994; 3(1):87-101. PubMed ID: 8044355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplifications in analyzing positron emission tomography data: effects on outcome measures.
    Logan J; Alexoff D; Kriplani A
    Nucl Med Biol; 2007 Oct; 34(7):743-56. PubMed ID: 17921027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the brain by positron emission tomography.
    Herscovitch P
    Rheum Dis Clin North Am; 1993 Nov; 19(4):765-94. PubMed ID: 8265822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of kinetic parameters without input functions: analysis of three methods for multichannel blind identification.
    Riabkov DY; Di Bella EV
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1318-27. PubMed ID: 12450362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.