These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8417012)

  • 1. Nitric oxide synthesis and regional cerebral blood flow responses to hypercapnia and hypoxia in the rat.
    Pelligrino DA; Koenig HM; Albrecht RF
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):80-7. PubMed ID: 8417012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia.
    Iadecola C; Zhang F
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R546-52. PubMed ID: 7511352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blockade of nitric oxide synthesis in rats strongly attenuates the CBF response to extracellular acidosis.
    Niwa K; Lindauer U; Villringer A; Dirnagl U
    J Cereb Blood Flow Metab; 1993 May; 13(3):535-9. PubMed ID: 8478412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hypoxia and reoxygenation on nitric oxide production and cerebral blood flow in developing rat striatum.
    Ioroi T; Yonetani M; Nakamura H
    Pediatr Res; 1998 Jun; 43(6):733-7. PubMed ID: 9621981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia.
    Horvath I; Sandor NT; Ruttner Z; McLaughlin AC
    J Cereb Blood Flow Metab; 1994 May; 14(3):503-9. PubMed ID: 8163593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat.
    Morikawa E; Moskowitz MA; Huang Z; Yoshida T; Irikura K; Dalkara T
    Stroke; 1994 Feb; 25(2):429-35. PubMed ID: 7508154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread attenuation of the cerebrovascular reactivity to hypercapnia following inhibition of nitric oxide synthase in the conscious rat.
    Bonvento G; Seylaz J; Lacombe P
    J Cereb Blood Flow Metab; 1994 Sep; 14(5):699-703. PubMed ID: 7520450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitric oxide synthase inhibition on the cerebral vascular response to hypercapnia in primates.
    McPherson RW; Kirsch JR; Ghaly RF; Traystman RJ
    Stroke; 1995 Apr; 26(4):682-7. PubMed ID: 7535954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension.
    Wang Q; Paulson OB; Lassen NA
    J Cereb Blood Flow Metab; 1992 Nov; 12(6):947-53. PubMed ID: 1400648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the endogenous nitric oxide in the vasodilatory tone and CO2 responsiveness of the rostral ventrolateral medulla microcirculation in the rat.
    Wołk R; Nowicki D; Siemińska J; Trzebski A
    J Physiol Pharmacol; 1995 Jun; 46(2):127-39. PubMed ID: 7670122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the inhibitor of nitric oxide synthase, NG-nitro-L-arginine methyl ester, on cerebral and myocardial blood flows during hypoxia in the awake dog.
    Audibert G; Saunier CG; Siat J; Hartemann D; Lambert J
    Anesth Analg; 1995 Nov; 81(5):945-51. PubMed ID: 7486082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of nitric oxide in the regulation of cerebral blood flow.
    Buchanan JE; Phillis JW
    Brain Res; 1993 May; 610(2):248-55. PubMed ID: 8319087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIN-1 reverses attenuation of hypercapnic cerebrovasodilation by nitric oxide synthase inhibitors.
    Iadecola C; Zhang F; Xu X
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R228-35. PubMed ID: 7519410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal NOS-derived NO plays permissive role in cerebral blood flow response to hypercapnia.
    Okamoto H; Hudetz AG; Roman RJ; Bosnjak ZJ; Kampine JP
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H559-66. PubMed ID: 9038979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia, alpha 2-adrenergic, and nitric oxide-dependent interactions on canine cerebral blood flow.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H476-82. PubMed ID: 7511347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nitric oxide synthase inhibition on regional cerebral blood flow and vascular resistance in conscious and isoflurane-anesthetized rats.
    Wei HM; Weiss HR; Sinha AK; Chi OZ
    Anesth Analg; 1993 Nov; 77(5):880-5. PubMed ID: 7692769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide mediation of chemoregulation but not autoregulation of cerebral blood flow in primates.
    Thompson BG; Pluta RM; Girton ME; Oldfield EH
    J Neurosurg; 1996 Jan; 84(1):71-8. PubMed ID: 8613839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nitric oxide synthesis: effects on cerebral blood flow and glucose utilisation in the rat.
    Macrae IM; Dawson DA; Norrie JD; McCulloch J
    J Cereb Blood Flow Metab; 1993 Nov; 13(6):985-92. PubMed ID: 7691855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the nitric oxide synthase inhibitor L-NMMA on cerebrovascular and cardiovascular responses to hypoxia and hypercapnia in humans.
    Ide K; Worthley M; Anderson T; Poulin MJ
    J Physiol; 2007 Oct; 584(Pt 1):321-32. PubMed ID: 17673507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminished muscarinic receptor-mediated cerebral blood flow response in streptozotocin-treated rats.
    Pelligrino DA; Miletich DJ; Albrecht RF
    Am J Physiol; 1992 Apr; 262(4 Pt 1):E447-54. PubMed ID: 1566832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.