These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 8417167)

  • 1. Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid.
    Shimada N; Graf R; Rosner G; Heiss WD
    J Neurochem; 1993 Jan; 60(1):66-71. PubMed ID: 8417167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood and Brain Metabolites after Cerebral Ischemia.
    Baranovicova E; Kalenska D; Kaplan P; Kovalska M; Tatarkova Z; Lehotsky J
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging.
    Carretero VJ; Ramos E; Segura-Chama P; Hernández A; Baraibar AM; Álvarez-Merz I; Muñoz FL; Egea J; Solís JM; Romero A; Hernández-Guijo JM
    Antioxidants (Basel); 2023 Oct; 12(10):. PubMed ID: 37891922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs: The New Challenge for Traumatic Brain Injury Diagnosis.
    Pinchi E; Frati P; Arcangeli M; Volonnino G; Tomassi R; Santoro P; Cipolloni L
    Curr Neuropharmacol; 2020; 18(4):319-331. PubMed ID: 31729300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Brain Metabolism by Nuclear Magnetic Resonance.
    Downes DP; Collins JHP; Lama B; Zeng H; Nguyen T; Keller G; Febo M; Long JR
    Chemphyschem; 2019 Jan; 20(2):216-230. PubMed ID: 30536696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaled traumatic brain injury results in unique metabolomic signatures between gray matter, white matter, and serum in a piglet model.
    Baker EW; Henderson WM; Kinder HA; Hutcheson JM; Platt SR; West FD
    PLoS One; 2018; 13(10):e0206481. PubMed ID: 30379914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of intrathecal pretreatment with taurine on neurological outcome after transient spinal cord ischemia in the rat.
    Kakinohana M; Taira Y; Marsala M
    J Anesth; 1998 Dec; 12(4):215-218. PubMed ID: 28921320
    [No Abstract]   [Full Text] [Related]  

  • 8. Precision medicine of aneurysmal subarachnoid hemorrhage, vasospasm and delayed cerebral ischemia.
    Burrell C; Avalon NE; Siegel J; Pizzi M; Dutta T; Charlesworth MC; Freeman WD
    Expert Rev Neurother; 2016 Nov; 16(11):1251-1262. PubMed ID: 27314601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSF and Serum Biomarkers Focusing on Cerebral Vasospasm and Ischemia after Subarachnoid Hemorrhage.
    Jung CS; Lange B; Zimmermann M; Seifert V
    Stroke Res Treat; 2013; 2013():560305. PubMed ID: 23509668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA Not Only a Neurotransmitter: Osmotic Regulation by GABA(A)R Signaling.
    Cesetti T; Ciccolini F; Li Y
    Front Cell Neurosci; 2011 Jan; 6():3. PubMed ID: 22319472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuroprotective effect of propofol against brain ischemia mediated by the glutamatergic signaling pathway in rats.
    Cai J; Hu Y; Li W; Li L; Li S; Zhang M; Li Q
    Neurochem Res; 2011 Oct; 36(10):1724-31. PubMed ID: 21556843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA release under normal and ischemic conditions.
    Saransaari P; Oja SS
    Neurochem Res; 2008 May; 33(5):962-9. PubMed ID: 17940883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotransmitter receptors in the life and death of oligodendrocytes.
    Káradóttir R; Attwell D
    Neuroscience; 2007 Apr; 145(4):1426-38. PubMed ID: 17049173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiology and therapy of experimental stroke.
    Hossmann KA
    Cell Mol Neurobiol; 2006; 26(7-8):1057-83. PubMed ID: 16710759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of GABA release in mouse brain stem slices under normal and ischemic conditions.
    Saransaari P; Oja SS
    Neurochem Res; 2005 Dec; 30(12):1549-56. PubMed ID: 16362774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrospinal fluid taurine after traumatic brain injury.
    Seki Y; Kimura M; Mizutani N; Fujita M; Aimi Y; Suzuki Y
    Neurochem Res; 2005 Jan; 30(1):123-8. PubMed ID: 15756940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate-induced excitotoxicity in retina: neuroprotection with receptor antagonist, dextromethorphan, but not with calcium channel blockers.
    Calzada JI; Jones BE; Netland PA; Johnson DA
    Neurochem Res; 2002 Feb; 27(1-2):79-88. PubMed ID: 11926279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-type calcium channels and their regulation by GABAB receptors in axons of neonatal rat optic nerve.
    Sun BB; Chiu SY
    J Neurosci; 1999 Jul; 19(13):5185-94. PubMed ID: 10377330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of glucose deprivation, chemical hypoxia, and simulated ischemia on Na+ homeostasis in rat spinal cord astrocytes.
    Rose CR; Waxman SG; Ransom BR
    J Neurosci; 1998 May; 18(10):3554-62. PubMed ID: 9570787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of pathophysiology of stroke by positron emission tomography.
    Heiss WD; Herholz K
    Eur J Nucl Med; 1994 May; 21(5):455-65. PubMed ID: 8062853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.