These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8417748)

  • 1. Tracheal view of vocal fold vibration in excised canine larynxes.
    Yumoto E; Kadota Y; Kurokawa H
    Arch Otolaryngol Head Neck Surg; 1993 Jan; 119(1):73-8. PubMed ID: 8417748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [High speed cinematographic analysis of subglottal mucosal vibration during experimentally induced phonation in excised larynges].
    Kurokawa H
    Nihon Jibiinkoka Gakkai Kaiho; 1992 Aug; 95(8):1151-63. PubMed ID: 1403309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infraglottic aspect of canine vocal fold vibration: effect of increase of mean airflow rate and lengthening of vocal fold.
    Yumoto E; Kadota Y; Kurokawa H
    J Voice; 1993 Dec; 7(4):311-8. PubMed ID: 8293063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pliability of vocal fold mucosa in relation to the location of subglottic mucosal upheaval during phonation].
    Kadota Y
    Nihon Jibiinkoka Gakkai Kaiho; 1994 Aug; 97(8):1423-36. PubMed ID: 7931798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyroarytenoid muscle activity and infraglottic aspect of canine vocal fold vibration.
    Yumoto E; Kadota Y; Kurokawa H
    Arch Otolaryngol Head Neck Surg; 1995 Jul; 121(7):759-64. PubMed ID: 7598853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vocal fold vibration viewed from the tracheal side in living human beings.
    Yumoto E; Kadota Y; Mori T
    Otolaryngol Head Neck Surg; 1996 Oct; 115(4):329-34. PubMed ID: 8861887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pliability of the vocal fold mucosa in relation to the mucosal upheaval during phonation.
    Yumoto E; Kadota Y
    Arch Otolaryngol Head Neck Surg; 1998 Aug; 124(8):897-902. PubMed ID: 9708716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of vocal fold vibration by x-ray stroboscopy with multiple markers.
    Kusuyama T; Fukuda H; Shiotani A; Nakagawa H; Kanzaki J
    Otolaryngol Head Neck Surg; 2001 Mar; 124(3):317-22. PubMed ID: 11240999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration.
    Titze IR; Jiang JJ; Hsiao TY
    Ann Otol Rhinol Laryngol; 1993 Jan; 102(1 Pt 1):58-63. PubMed ID: 8420470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibratory patterns of normal and microscopically operated larynges. Observation of lower surface of vocal fold in dogs.
    Yumoto E; Okamoto K; Kurokawa H; Okamura H
    Acta Otolaryngol; 1989; 108(3-4):298-304. PubMed ID: 2816344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of the effects of thyroarytenoid muscle activity upon pliability of vocal fold mucosa in an in vivo canine model.
    Yumoto E; Kadota Y
    Laryngoscope; 1997 Feb; 107(2):266-72. PubMed ID: 9023254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative study of mucosal wave via videokymography in canine larynges.
    Jiang JJ; Chang CI; Raviv JR; Gupta S; Banzali FM; Hanson DG
    Laryngoscope; 2000 Sep; 110(9):1567-73. PubMed ID: 10983964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic movement of air tract fluid in lubrication of the larynx during phonation: a basic study using excised canine larynges and experimental air tract fluid by means of X-ray stroboscope system.
    Kawaida M; Fukuda H; Kano S; Shiotani A; Kohno N
    Auris Nasus Larynx; 1990; 16(4):237-43. PubMed ID: 2360887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
    Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J
    Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Basic research on vocal fold dynamics: three-dimensional vibration analysis of human and canine larynges].
    Döllinger M; Rosanowski F; Eysholdt U; Lohscheller J
    HNO; 2008 Dec; 56(12):1213-20. PubMed ID: 17431569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the Subharmonic Mucosal Wave in Excised Larynges via Digital Kymography.
    Zhang Y; Huang N; Calawerts W; Li L; Maytag AL; Jiang JJ
    J Voice; 2017 Jan; 31(1):123.e7-123.e13. PubMed ID: 27105856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear behavior of vocal fold vibration: the role of coupling between the vocal folds.
    Giovanni A; Ouaknine M; Guelfucci R; Yu T; Zanaret M; Triglia JM
    J Voice; 1999 Dec; 13(4):465-76. PubMed ID: 10622513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.