These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 8418833)
1. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Vellom DC; Radić Z; Li Y; Pickering NA; Camp S; Taylor P Biochemistry; 1993 Jan; 32(1):12-7. PubMed ID: 8418833 [TBL] [Abstract][Full Text] [Related]
2. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Radić Z; Pickering NA; Vellom DC; Camp S; Taylor P Biochemistry; 1993 Nov; 32(45):12074-84. PubMed ID: 8218285 [TBL] [Abstract][Full Text] [Related]
3. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Harel M; Sussman JL; Krejci E; Bon S; Chanal P; Massoulié J; Silman I Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10827-31. PubMed ID: 1438284 [TBL] [Abstract][Full Text] [Related]
4. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Saxena A; Redman AM; Jiang X; Lockridge O; Doctor BP Biochemistry; 1997 Dec; 36(48):14642-51. PubMed ID: 9398183 [TBL] [Abstract][Full Text] [Related]
5. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases. Hosea NA; Berman HA; Taylor P Biochemistry; 1995 Sep; 34(36):11528-36. PubMed ID: 7547883 [TBL] [Abstract][Full Text] [Related]
6. Asp7O in the peripheral anionic site of human butyrylcholinesterase. Masson P; Froment MT; Bartels CF; Lockridge O Eur J Biochem; 1996 Jan; 235(1-2):36-48. PubMed ID: 8631355 [TBL] [Abstract][Full Text] [Related]
7. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P Biochem J; 2003 Jul; 373(Pt 1):33-40. PubMed ID: 12665427 [TBL] [Abstract][Full Text] [Related]
8. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? Kaplan D; Ordentlich A; Barak D; Ariel N; Kronman C; Velan B; Shafferman A Biochemistry; 2001 Jun; 40(25):7433-45. PubMed ID: 11412096 [TBL] [Abstract][Full Text] [Related]
9. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands. Loewenstein Y; Gnatt A; Neville LF; Soreq H J Mol Biol; 1993 Nov; 234(2):289-96. PubMed ID: 8230213 [TBL] [Abstract][Full Text] [Related]
10. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases. Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273 [TBL] [Abstract][Full Text] [Related]
11. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Saxena A; Redman AM; Jiang X; Lockridge O; Doctor BP Chem Biol Interact; 1999 May; 119-120():61-9. PubMed ID: 10421439 [TBL] [Abstract][Full Text] [Related]
12. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the Medaka Oryzias latipes. Pezzementi L; Nachon F; Chatonnet A PLoS One; 2011 Feb; 6(2):e17396. PubMed ID: 21364766 [TBL] [Abstract][Full Text] [Related]
13. Determinants of substrate specificity of a second non-neuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis. Hussein AS; Smith AM; Chacón MR; Selkirk ME Eur J Biochem; 2000 Apr; 267(8):2276-82. PubMed ID: 10759851 [TBL] [Abstract][Full Text] [Related]
14. Amino acid residues involved in stereoselective inhibition of cholinesterases with bambuterol. Bosak A; Gazić I; Vinković V; Kovarik Z Arch Biochem Biophys; 2008 Mar; 471(1):72-6. PubMed ID: 18167304 [TBL] [Abstract][Full Text] [Related]
15. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases. Saxena A; Qian N; Kovach IM; Kozikowski AP; Pang YP; Vellom DC; Radić Z; Quinn D; Taylor P; Doctor BP Protein Sci; 1994 Oct; 3(10):1770-8. PubMed ID: 7849595 [TBL] [Abstract][Full Text] [Related]
16. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. Ordentlich A; Barak D; Kronman C; Flashner Y; Leitner M; Segall Y; Ariel N; Cohen S; Velan B; Shafferman A J Biol Chem; 1993 Aug; 268(23):17083-95. PubMed ID: 8349597 [TBL] [Abstract][Full Text] [Related]
17. Reversible inhibition of acetylcholinesterase and butyrylcholinesterase by 4,4'-bipyridine and by a coumarin derivative. Simeon-Rudolf V; Kovarik Z; Radić Z; Reiner E Chem Biol Interact; 1999 May; 119-120():119-28. PubMed ID: 10421445 [TBL] [Abstract][Full Text] [Related]
18. Excavations into the active-site gorge of cholinesterases. Soreq H; Gnatt A; Loewenstein Y; Neville LF Trends Biochem Sci; 1992 Sep; 17(9):353-8. PubMed ID: 1412713 [TBL] [Abstract][Full Text] [Related]
19. Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline. Kovarik Z; Radić Z; Grgas B; Skrinjarić-Spoljar M; Reiner E; Simeon-Rudolf V Biochim Biophys Acta; 1999 Aug; 1433(1-2):261-71. PubMed ID: 10446376 [TBL] [Abstract][Full Text] [Related]
20. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Massoulié J; Sussman J; Bon S; Silman I Prog Brain Res; 1993; 98():139-46. PubMed ID: 8248501 [No Abstract] [Full Text] [Related] [Next] [New Search]