These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8419676)

  • 1. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.
    Noe DA; Voto SJ; Hoffmann MS; Askew MJ; Gradisar IA
    J Biomed Eng; 1993 Jan; 15(1):23-6. PubMed ID: 8419676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad.
    Jørgensen U; Bojsen-Møller F
    Foot Ankle; 1989 Jun; 9(6):294-9. PubMed ID: 2744671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study.
    De Clercq D; Aerts P; Kunnen M
    J Biomech; 1994 Oct; 27(10):1213-22. PubMed ID: 7962009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foot strike and the properties of the human heel pad.
    Ker RF; Bennett MB; Alexander RM; Kester RC
    Proc Inst Mech Eng H; 1989; 203(4):191-6. PubMed ID: 2701955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of heel pad confinement for the shock absorption at heel strike.
    Jørgensen U; Ekstrand J
    Int J Sports Med; 1988 Dec; 9(6):468-73. PubMed ID: 3253241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The shock attenuation characteristics of four different insoles when worn in a military boot during running and marching.
    Windle CM; Gregory SM; Dixon SJ
    Gait Posture; 1999 Mar; 9(1):31-7. PubMed ID: 10575068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcaneus range of motion underestimated by markers on running shoe heel.
    Alcantara RS; Trudeau MB; Rohr ES
    Gait Posture; 2018 Jun; 63():68-72. PubMed ID: 29723650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Med Eng Phys; 2013 Apr; 35(4):441-7. PubMed ID: 22789809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of the calcaneus at heel strike in neutrally aligned and pes planus feet.
    Ledoux WR; Hillstrom HJ
    Clin Biomech (Bristol, Avon); 2001 Aug; 16(7):608-13. PubMed ID: 11470303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material properties of the human calcaneal fat pad in compression: experiment and theory.
    Miller-Young JE; Duncan NA; Baroud G
    J Biomech; 2002 Dec; 35(12):1523-31. PubMed ID: 12445605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo examination of the dynamic properties of the human heel pad.
    Kinoshita H; Ogawa T; Kuzuhara K; Ikuta K
    Int J Sports Med; 1993 Aug; 14(6):312-9. PubMed ID: 8407060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenetic changes in foot strike pattern and calcaneal loading during walking in young children.
    Zeininger A; Schmitt D; Jensen JL; Shapiro LJ
    Gait Posture; 2018 Jan; 59():18-22. PubMed ID: 28982055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.
    Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A
    Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical properties of the human heel pad: a paradox resolved.
    Aerts P; Ker RF; De Clercq D; Ilsley DW; Alexander RM
    J Biomech; 1995 Nov; 28(11):1299-308. PubMed ID: 8522543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanical properties of the heel pad in elderly adults.
    Kinoshita H; Francis PR; Murase T; Kawai S; Ogawa T
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):404-9. PubMed ID: 8803499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling.
    Natali AN; Fontanella CG; Carniel EL; Young M
    Proc Inst Mech Eng H; 2011 May; 225(5):449-59. PubMed ID: 21755775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body load in heel-strike running: the effect of a firm heel counter.
    Jørgensen U
    Am J Sports Med; 1990; 18(2):177-81. PubMed ID: 2343986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanical protocol to replicate impact in walking footwear.
    Price C; Cooper G; Graham-Smith P; Jones R
    Gait Posture; 2014; 40(1):26-31. PubMed ID: 24618371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging of running shoes and its effect on mechanical and biomechanical variables: implications for runners.
    Chambon N; Sevrez V; Ly QH; Guéguen N; Berton E; Rao G
    J Sports Sci; 2014; 32(11):1013-22. PubMed ID: 24576090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.