These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8420625)

  • 1. Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod.
    Yaga K; Reiter RJ; Manchester LC; Nieves H; Sun JH; Chen LD
    Brain Res Bull; 1993; 30(1-2):153-6. PubMed ID: 8420625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inconsistent suppression of nocturnal pineal melatonin synthesis and serum melatonin levels in rats exposed to pulsed DC magnetic fields.
    Reiter RJ; Tan DX; Poeggeler B; Kavet R
    Bioelectromagnetics; 1998; 19(5):318-29. PubMed ID: 9669546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin.
    Reiter RJ
    J Cell Biochem; 1993 Apr; 51(4):394-403. PubMed ID: 8098713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland.
    Vollrath L; Spessert R; Kratzsch T; Keiner M; Hollmann H
    Bioelectromagnetics; 1997; 18(5):376-87. PubMed ID: 9209719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed static magnetic field effects on in-vitro pineal indoleamine metabolism.
    Richardson BA; Yaga K; Reiter RJ; Morton DJ
    Biochim Biophys Acta; 1992 Oct; 1137(1):59-64. PubMed ID: 1382609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entrainment of the circadian rhythm in the rat pineal N-acetyltransferase activity by melatonin is photoperiod dependent.
    Humlová M; Illnerová H
    J Pineal Res; 1992 Nov; 13(4):151-7. PubMed ID: 1287190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effect of various wave lengths of light and various duration of impulse times on suppression of n-acetyltransferase activity in the rat pineal gland].
    Jarmak A; Zawilska JB; Nowak JZ
    Klin Oczna; 1998; 100(2):77-80. PubMed ID: 9695540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related differences in serum melatonin and pineal NAT activity and in the response of rat pineal to a 50-Hz magnetic field.
    Selmaoui B; Touitou Y
    Life Sci; 1999; 64(24):2291-7. PubMed ID: 10374919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction in pineal N-acetyltransferase activity and pineal and serum melatonin levels in rats after their exposure to red light at night.
    Sun JH; Yaga K; Reiter RJ; Garza M; Manchester LC; Tan DX; Poeggeler B
    Neurosci Lett; 1993 Jan; 149(1):56-8. PubMed ID: 8469380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the circadian rhythm in pineal melatonin production.
    Illnerová H; Vanĕcek J
    Physiol Bohemoslov; 1985; 34 Suppl():57-61. PubMed ID: 2941797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland.
    Welker HA; Semm P; Willig RP; Commentz JC; Wiltschko W; Vollrath L
    Exp Brain Res; 1983; 50(2-3):426-32. PubMed ID: 6641877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field exposure alters serum melatonin but not pineal melatonin synthesis in male rats.
    Grota LJ; Reiter RJ; Keng P; Michaelson S
    Bioelectromagnetics; 1994; 15(5):427-37. PubMed ID: 7802710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure.
    Selmaoui B; Touitou Y
    Life Sci; 1995; 57(14):1351-8. PubMed ID: 7564882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (+)-N-allylnormetazocine enhances N-acetyltransferase activity and melatonin synthesis: preliminary evidence for a functional role of sigma receptors in the rat pineal gland.
    Steardo L; Monteleone P; d'Istria M; Serino I; Maj M; Cuomo V
    J Pharmacol Exp Ther; 1995 Nov; 275(2):845-9. PubMed ID: 7473175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static magnetic fields decrease nocturnal pineal cAMP in the rat.
    Rudolph K; Wirz-Justice A; Kräuchi K; Feer H
    Brain Res; 1988 Apr; 446(1):159-60. PubMed ID: 2836027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of melatonin synthesis in the ovine pineal gland.
    Namboodiri MA; Valivullah HM; Moffett JR
    Adv Exp Med Biol; 1991; 294():137-48. PubMed ID: 1772063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twenty-four-hour pineal melatonin synthesis in the vasopressin-deficient Brattleboro rat.
    Schröder H; Stehle J; Henschel M
    Brain Res; 1988 Sep; 459(2):328-32. PubMed ID: 3179707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin rhythm onset in the adult siberian hamster: influence of photoperiod but not 60-Hz magnetic field exposure on melatonin content in the pineal gland and in circulation.
    Yellon SM; Truong HN
    J Biol Rhythms; 1998 Feb; 13(1):52-9. PubMed ID: 9486843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adjustment of the melatonin rhythm of rats by 90-min dark pulses.
    Laakso ML; Hätönen T; Alila A
    Neurosci Lett; 1994 Jan; 166(1):13-6. PubMed ID: 8190352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p-Chlorophenylalanine treatment depresses the number of synaptic ribbon profiles in the rat pineal gland, but does not abolish their day-night rhythm.
    Sousa Neto JA; Seidel A; Manz B; Vollrath L
    Ann Anat; 1995 Mar; 177(2):105-10. PubMed ID: 7741268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.