These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8420967)

  • 41. Evidence for the participation of alpha B-crystallin in human age-related nuclear cataract.
    Truscott RJ; Chen YC; Shaw DC
    Int J Biol Macromol; 1998; 22(3-4):321-30. PubMed ID: 9650087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential influence of proteolysis by calpain 2 and Lp82 on in vitro precipitation of mouse lens crystallins.
    Azuma M; Tamada Y; Kanaami S; Nakajima E; Nakamura Y; Fukiage C; Forsberg NE; Duncan MK; Shearer TR
    Biochem Biophys Res Commun; 2003 Aug; 307(3):558-63. PubMed ID: 12893259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calpain II in two in vivo models of sugar cataract.
    Azuma M; Shearer TR; Matsumoto T; David LL; Murachi T
    Exp Eye Res; 1990 Oct; 51(4):393-401. PubMed ID: 2209751
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The sequence of human betaB1-crystallin cDNA allows mass spectrometric detection of betaB1 protein missing portions of its N-terminal extension.
    David LL; Lampi KJ; Lund AL; Smith JB
    J Biol Chem; 1996 Feb; 271(8):4273-9. PubMed ID: 8626774
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lens-specific βA3/A1-conditional knockout mice: Phenotypic characteristics and calpain activation causing protein degradation and insolubilization.
    Joseph R; Robinson ML; Lambert L; Srivastava OP
    PLoS One; 2023; 18(3):e0281386. PubMed ID: 36989286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry.
    Lampi KJ; Ma Z; Hanson SR; Azuma M; Shih M; Shearer TR; Smith DL; Smith JB; David LL
    Exp Eye Res; 1998 Jul; 67(1):31-43. PubMed ID: 9702176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of origin of two polypeptides of 4 and 5 kD isolated from human lenses.
    Srivastava OP; Srivastava K; Silney C
    Invest Ophthalmol Vis Sci; 1994 Jan; 35(1):207-14. PubMed ID: 7507906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the composition and origin of the urea-soluble polypeptides of the U18666A cataract.
    Cenedella RJ; Augusteyn RC
    Curr Eye Res; 1990 Sep; 9(9):805-18. PubMed ID: 2245643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alterations in the lenticular protein profile in experimental selenite-induced cataractogenesis and prevention by ellagic acid.
    Sakthivel M; Geraldine P; Thomas PA
    Graefes Arch Clin Exp Ophthalmol; 2011 Aug; 249(8):1201-10. PubMed ID: 21455778
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carnosine ameliorates lens protein turbidity formations by inhibiting calpain proteolysis and ultraviolet C-induced degradation.
    Liao JH; Lin IL; Huang KF; Kuo PT; Wu SH; Wu TH
    J Agric Food Chem; 2014 Jun; 62(25):5932-8. PubMed ID: 24932548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Age-related cleavages of crystallins in human lens cortical fiber cells generate a plethora of endogenous peptides and high molecular weight complexes.
    Su SP; Song X; Xavier D; Aquilina JA
    Proteins; 2015 Oct; 83(10):1878-86. PubMed ID: 26238763
    [TBL] [Abstract][Full Text] [Related]  

  • 53. C-terminal truncation of alpha-crystallin in hereditary cataractous rat lens.
    Takeuchi N; Ouchida A; Kamei A
    Biol Pharm Bull; 2004 Mar; 27(3):308-14. PubMed ID: 14993793
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in calpain II mRNA in young rat lens during maturation and cataract formation.
    Ma H; Shih M; Throneberg DB; David LL; Shearer TR
    Exp Eye Res; 1997 Mar; 64(3):437-45. PubMed ID: 9196396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BetaB2-crystallin undergoes extensive truncation during aging in human lenses.
    Srivastava OP; Srivastava K
    Biochem Biophys Res Commun; 2003 Jan; 301(1):44-9. PubMed ID: 12535638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses.
    Fujii N; Sakaue H; Sasaki H; Fujii N
    J Biol Chem; 2012 Nov; 287(47):39992-40002. PubMed ID: 23007399
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulatory effect of chrysin on expression of lenticular calcium transporters, calpains, and apoptotic-cascade components in selenite-induced cataract.
    Sundararajan M; Thomas PA; Teresa PA; Anbukkarasi M; Geraldine P
    Mol Vis; 2016; 22():401-23. PubMed ID: 27168717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro precipitation of rat lens crystallins by calpain I--a calpain requiring low amounts of calcium for activation.
    Shearer TR; Throneburg DB; Shih M
    Ophthalmic Res; 1996; 28 Suppl 2():109-14. PubMed ID: 8883097
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-related degradation of betaA3/A1-crystallin in human lenses.
    Srivastava OP; Srivastava K; Harrington V
    Biochem Biophys Res Commun; 1999 May; 258(3):632-8. PubMed ID: 10329436
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age.
    Ueda Y; Duncan MK; David LL
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):205-15. PubMed ID: 11773033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.