BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8420999)

  • 1. Influence of mineral content and composition on graylevels in backscattered electron images of bone.
    Skedros JG; Bloebaum RD; Bachus KN; Boyce TM; Constantz B
    J Biomed Mater Res; 1993 Jan; 27(1):57-64. PubMed ID: 8420999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The meaning of graylevels in backscattered electron images of bone.
    Skedros JG; Bloebaum RD; Bachus KN; Boyce TM
    J Biomed Mater Res; 1993 Jan; 27(1):47-56. PubMed ID: 8380598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistency in calibrated backscattered electron images of calcified tissues and minerals analyzed in multiple imaging sessions.
    Vajda EG; Skedros JG; Bloebaum RD
    Scanning Microsc; 1995 Sep; 9(3):741-53. PubMed ID: 9565522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities.
    Roschger P; Plenk H; Klaushofer K; Eschberger J
    Scanning Microsc; 1995 Mar; 9(1):75-86; discussion 86-8. PubMed ID: 8553027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducible methods for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone.
    Boyce TM; Bloebaum RD; Bachus KN; Skedros JG
    Scanning Microsc; 1990 Sep; 4(3):591-600; discussion 600-3. PubMed ID: 2080424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining mineral content variations in bone using backscattered electron imaging.
    Bloebaum RD; Skedros JG; Vajda EG; Bachus KN; Constantz BR
    Bone; 1997 May; 20(5):485-90. PubMed ID: 9145247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlating the mechanical properties to the mineral content of carious dentine--a comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals.
    Angker L; Nockolds C; Swain MV; Kilpatrick N
    Arch Oral Biol; 2004 May; 49(5):369-78. PubMed ID: 15041484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective.
    Skedros JG; Holmes JL; Vajda EG; Bloebaum RD
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):781-803. PubMed ID: 16037990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging.
    Angker L; Nockolds C; Swain MV; Kilpatrick N
    Arch Oral Biol; 2004 Feb; 49(2):99-107. PubMed ID: 14693203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metacarpal head biomechanics: a comparative backscattered electron image analysis of trabecular bone mineral density in Pan troglodytes, Pongo pygmaeus, and Homo sapiens.
    Zeininger A; Richmond BG; Hartman G
    J Hum Evol; 2011 Jun; 60(6):703-10. PubMed ID: 21316735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrations of osteocalcin and phosphoprotein as a function of mineral content and age in cortical bone.
    Lian JB; Roufosse AH; Reit B; Glimcher MJ
    Calcif Tissue Int; 1982; 34 Suppl 2():S82-7. PubMed ID: 6816454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM.
    Reid SA; Boyde A
    J Bone Miner Res; 1987 Feb; 2(1):13-22. PubMed ID: 3455153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity.
    Brzóska MM; Majewska K; Moniuszko-Jakoniuk J
    Food Chem Toxicol; 2005 Oct; 43(10):1507-19. PubMed ID: 16005137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants.
    Traini T; Degidi M; Iezzi G; Artese L; Piattelli A
    J Dent; 2007 Jan; 35(1):84-92. PubMed ID: 16979279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of topography and specimen preparation on backscattered electron images of bone.
    Vajda EG; Humphrey S; Skedros JG; Bloebaum RD
    Scanning; 1999; 21(6):379-87. PubMed ID: 10654424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backscattered electron imaging: the role in calcified tissue and implant analysis.
    Bloebaum RD; Bachus KN; Boyce TM
    J Biomater Appl; 1990 Jul; 5(1):56-85. PubMed ID: 2200867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in quality of bone mineral on aging and in disease.
    Grynpas MD; Holmyard D
    Scanning Microsc; 1988 Jun; 2(2):1045-54. PubMed ID: 3399845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical explanation of the relationship between backscattered electron and x-ray linear attenuation coefficients in calcified tissues.
    Wong FS; Elliott JC
    Scanning; 1997 Nov; 19(8):541-6. PubMed ID: 9418207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural properties of bone in rat vertebra after long-term clodronate treatment.
    Koivukangas A; Tuukkanen J; Lehenkari P; Peura R; Hannuniemi R; Kippo K; Jämsä T; Jalovaara P
    J Bone Miner Metab; 2002; 20(4):223-7. PubMed ID: 12115068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lean tissue mass is a better predictor of bone mineral content and density than body weight in prepubertal girls.
    Courteix D; Lespessailles E; Loiseau-Peres S; Obert P; Ferry B; Benhamou CL
    Rev Rhum Engl Ed; 1998 May; 65(5):328-36. PubMed ID: 9636952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.