These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8420999)

  • 1. Influence of mineral content and composition on graylevels in backscattered electron images of bone.
    Skedros JG; Bloebaum RD; Bachus KN; Boyce TM; Constantz B
    J Biomed Mater Res; 1993 Jan; 27(1):57-64. PubMed ID: 8420999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The meaning of graylevels in backscattered electron images of bone.
    Skedros JG; Bloebaum RD; Bachus KN; Boyce TM
    J Biomed Mater Res; 1993 Jan; 27(1):47-56. PubMed ID: 8380598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistency in calibrated backscattered electron images of calcified tissues and minerals analyzed in multiple imaging sessions.
    Vajda EG; Skedros JG; Bloebaum RD
    Scanning Microsc; 1995 Sep; 9(3):741-53. PubMed ID: 9565522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities.
    Roschger P; Plenk H; Klaushofer K; Eschberger J
    Scanning Microsc; 1995 Mar; 9(1):75-86; discussion 86-8. PubMed ID: 8553027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducible methods for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone.
    Boyce TM; Bloebaum RD; Bachus KN; Skedros JG
    Scanning Microsc; 1990 Sep; 4(3):591-600; discussion 600-3. PubMed ID: 2080424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining mineral content variations in bone using backscattered electron imaging.
    Bloebaum RD; Skedros JG; Vajda EG; Bachus KN; Constantz BR
    Bone; 1997 May; 20(5):485-90. PubMed ID: 9145247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlating the mechanical properties to the mineral content of carious dentine--a comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals.
    Angker L; Nockolds C; Swain MV; Kilpatrick N
    Arch Oral Biol; 2004 May; 49(5):369-78. PubMed ID: 15041484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective.
    Skedros JG; Holmes JL; Vajda EG; Bloebaum RD
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):781-803. PubMed ID: 16037990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging.
    Angker L; Nockolds C; Swain MV; Kilpatrick N
    Arch Oral Biol; 2004 Feb; 49(2):99-107. PubMed ID: 14693203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metacarpal head biomechanics: a comparative backscattered electron image analysis of trabecular bone mineral density in Pan troglodytes, Pongo pygmaeus, and Homo sapiens.
    Zeininger A; Richmond BG; Hartman G
    J Hum Evol; 2011 Jun; 60(6):703-10. PubMed ID: 21316735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrations of osteocalcin and phosphoprotein as a function of mineral content and age in cortical bone.
    Lian JB; Roufosse AH; Reit B; Glimcher MJ
    Calcif Tissue Int; 1982; 34 Suppl 2():S82-7. PubMed ID: 6816454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM.
    Reid SA; Boyde A
    J Bone Miner Res; 1987 Feb; 2(1):13-22. PubMed ID: 3455153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity.
    Brzóska MM; Majewska K; Moniuszko-Jakoniuk J
    Food Chem Toxicol; 2005 Oct; 43(10):1507-19. PubMed ID: 16005137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants.
    Traini T; Degidi M; Iezzi G; Artese L; Piattelli A
    J Dent; 2007 Jan; 35(1):84-92. PubMed ID: 16979279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of topography and specimen preparation on backscattered electron images of bone.
    Vajda EG; Humphrey S; Skedros JG; Bloebaum RD
    Scanning; 1999; 21(6):379-87. PubMed ID: 10654424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backscattered electron imaging: the role in calcified tissue and implant analysis.
    Bloebaum RD; Bachus KN; Boyce TM
    J Biomater Appl; 1990 Jul; 5(1):56-85. PubMed ID: 2200867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in quality of bone mineral on aging and in disease.
    Grynpas MD; Holmyard D
    Scanning Microsc; 1988 Jun; 2(2):1045-54. PubMed ID: 3399845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical explanation of the relationship between backscattered electron and x-ray linear attenuation coefficients in calcified tissues.
    Wong FS; Elliott JC
    Scanning; 1997 Nov; 19(8):541-6. PubMed ID: 9418207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural properties of bone in rat vertebra after long-term clodronate treatment.
    Koivukangas A; Tuukkanen J; Lehenkari P; Peura R; Hannuniemi R; Kippo K; Jämsä T; Jalovaara P
    J Bone Miner Metab; 2002; 20(4):223-7. PubMed ID: 12115068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lean tissue mass is a better predictor of bone mineral content and density than body weight in prepubertal girls.
    Courteix D; Lespessailles E; Loiseau-Peres S; Obert P; Ferry B; Benhamou CL
    Rev Rhum Engl Ed; 1998 May; 65(5):328-36. PubMed ID: 9636952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.