These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8421047)

  • 21. Effects of parathyroid hormone on newly regenerated bone during distraction osteogenesis in a rabbit tibial lengthening model. A pilot study.
    Aleksyniene R; Eckardt H; Bundgaard K; Lind M; Hvid I
    Medicina (Kaunas); 2006; 42(1):38-48. PubMed ID: 16467612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of lower-leg lengthening on bone mineral density and soft tissue composition of legs in a patient with achondroplasia.
    Takata S; Ikata T; Yonezu H; Inoue A
    J Bone Miner Metab; 2000; 18(6):339-41. PubMed ID: 11052467
    [No Abstract]   [Full Text] [Related]  

  • 23. [Regeneration formation index--new method of quantitative evaluation of distraction osteogenesis].
    Tesiorowski M; Potaczek T; Jasiewicz B; Kacki W; Łokas K
    Chir Narzadow Ruchu Ortop Pol; 2009; 74(3):121-6. PubMed ID: 19777941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variables affecting time to bone healing during limb lengthening.
    Fischgrund J; Paley D; Suter C
    Clin Orthop Relat Res; 1994 Apr; (301):31-7. PubMed ID: 8156692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Periosteum and bone marrow in bone lengthening: a DEXA quantitative evaluation in rabbits.
    Guichet JM; Braillon P; Bodenreider O; Lascombes P
    Acta Orthop Scand; 1998 Oct; 69(5):527-31. PubMed ID: 9855238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lower limb lengthening by a modified Wagner technique.
    Paterson JM; Waller CS; Catterall A
    J Pediatr Orthop; 1989; 9(2):129-33. PubMed ID: 2647783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-energy x-ray absorptiometry of the rat: accuracy, precision, and measurement of bone loss.
    Griffin MG; Kimble R; Hopfer W; Pacifici R
    J Bone Miner Res; 1993 Jul; 8(7):795-800. PubMed ID: 8352062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Bone Mineral Density at the Distal Femur and the Proximal Tibia by Dual-Energy X-ray Absorptiometry in Individuals With Spinal Cord Injury: Precision of Protocol and Relation to Injury Duration.
    Lobos S; Cooke A; Simonett G; Ho C; Boyd SK; Edwards WB
    J Clin Densitom; 2018; 21(3):338-346. PubMed ID: 28662973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Callus Distraction in the Treatment of Post-Traumatic Defects of the Femur and Tibia].
    Veselý R; Procházka V
    Acta Chir Orthop Traumatol Cech; 2016; 83(6):388-392. PubMed ID: 28026734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone mineral density changes in distracted callus stimulated by pulsed direct electrical current.
    Hamanishi C; Kawabata T; Yoshii T; Tanaka S
    Clin Orthop Relat Res; 1995 Mar; (312):247-52. PubMed ID: 7634610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative measurements of bone mineral density and bone contrast values in canine femora using dual-energy X-ray absorptiometry and conventional digital radiography.
    Lucas K; Nolte I; Galindo-Zamora V; Lerch M; Stukenborg-Colsman C; Behrens BA; Bouguecha A; Betancur S; Almohallami A; Wefstaedt P
    BMC Vet Res; 2017 May; 13(1):130. PubMed ID: 28490330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limb Lengthening in Patients with Achondroplasia.
    Park KW; Garcia RA; Rejuso CA; Choi JW; Song HR
    Yonsei Med J; 2015 Nov; 56(6):1656-62. PubMed ID: 26446651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys.
    Nordström P; Pettersson U; Lorentzon R
    J Bone Miner Res; 1998 Jul; 13(7):1141-8. PubMed ID: 9661078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precise measurement of bone mineral density in rats using dual-energy X-ray absorptiometry.
    Ladizesky MG; Zeni SN; Mautalén CA
    Acta Physiol Pharmacol Ther Latinoam; 1994; 44(1-2):30-5. PubMed ID: 7640402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of callus pattern of tibia lengthening in achondroplasia and a novel method of regeneration assessment using pixel values.
    Singh S; Song HR; Venkatesh KP; Modi HN; Park MS; Jang KM; Kim SJ
    Skeletal Radiol; 2010 Mar; 39(3):261-6. PubMed ID: 19418051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of corticalization using the pixel value ratio for fixator removal in tibial lengthening.
    Song SH; Sinha S; Kim TY; Park YE; Kim SJ; Song HR
    J Orthop Sci; 2011 Mar; 16(2):177-83. PubMed ID: 21360257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leg lengthening by distraction osteogenesis using the Ilizarov apparatus: a novel concept of tibia callus subsidence and its influencing factors.
    Shyam AK; Singh SU; Modi HN; Song HR; Lee SH; An H
    Int Orthop; 2009 Dec; 33(6):1753-9. PubMed ID: 18923832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fracture following lower limb lengthening in children: a series of 58 patients.
    Launay F; Younsi R; Pithioux M; Chabrand P; Bollini G; Jouve JL
    Orthop Traumatol Surg Res; 2013 Feb; 99(1):72-9. PubMed ID: 23246008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double-level fixator-assisted nailing (DL-FAN).
    Chaudhary MM; Lakhani PH
    Bone Joint J; 2019 Feb; 101-B(2):178-188. PubMed ID: 30700124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of ED-71 on modeling of bone in distraction osteogenesis.
    Yamane K; Okano T; Kishimoto H; Hagino H
    Bone; 1999 Mar; 24(3):187-93. PubMed ID: 10071910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.