BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8421315)

  • 1. Effects of a single base-pair deletion in the bacteriophage lambda PRM promoter. Repression of PRM by repressor bound at OR2 and by RNA polymerase bound at PR.
    Woody ST; Fong RS; Gussin GN
    J Mol Biol; 1993 Jan; 229(1):37-51. PubMed ID: 8421315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of P(RM) activity by the lambda PR promoter in both the presence and absence of repressor.
    Fong RS; Woody S; Gussin GN
    J Mol Biol; 1993 Aug; 232(3):792-804. PubMed ID: 8355271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and indirect effects of mutations in lambda PRM on open complex formation at the divergent PR promoter.
    Fong RS; Woody S; Gussin GN
    J Mol Biol; 1994 Jul; 240(2):119-26. PubMed ID: 8027996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex.
    Xu J; Koudelka GB
    J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA polymerase bound to the PR promoter of bacteriophage lambda inhibits open complex formation at the divergently transcribed PRM promoter. Implications for an indirect mechanism of transcriptional activation by lambda repressor.
    Hershberger PA; deHaseth PL
    J Mol Biol; 1991 Dec; 222(3):479-94. PubMed ID: 1836235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bacteriophage 434 right operator. Roles of O(R)1, O(R)2 and O(R)3.
    Bushman FD
    J Mol Biol; 1993 Mar; 230(1):28-40. PubMed ID: 8450541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex.
    Schröder O; Wagner R
    J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GalR represses galP1 by inhibiting the rate-determining open complex formation through RNA polymerase contact: a GalR negative control mutant.
    Roy S; Semsey S; Liu M; Gussin GN; Adhya S
    J Mol Biol; 2004 Nov; 344(3):609-18. PubMed ID: 15533432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A direct real-time spectroscopic investigation of the mechanism of open complex formation by T7 RNA polymerase.
    Sastry SS; Ross BM
    Biochemistry; 1996 Dec; 35(49):15715-25. PubMed ID: 8961934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and physical characterization of transcription initiation complexes in the bacteriophage lambda OR region.
    Hawley DK; Johnson AD; McClure WR
    J Biol Chem; 1985 Jul; 260(14):8618-26. PubMed ID: 3159734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the 17 bp spacer in the P(R) promoter of bacteriophage lambda affect steps in open complex formation that precede DNA strand separation.
    McKane M; Gussin GN
    J Mol Biol; 2000 Jun; 299(2):337-49. PubMed ID: 10860742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA.
    Craig ML; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Saecker RM; Record MT
    J Mol Biol; 1998 Nov; 283(4):741-56. PubMed ID: 9790837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor.
    Lopez PJ; Guillerez J; Sousa R; Dreyfus M
    J Mol Biol; 1998 Mar; 276(5):861-75. PubMed ID: 9566192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates.
    Saecker RM; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Record MT
    J Mol Biol; 2002 Jun; 319(3):649-71. PubMed ID: 12054861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a doubly mutant derivative of the lambda PRM promoter. Effects of mutations on activation of PRM.
    Hwang JJ; Brown S; Gussin GN
    J Mol Biol; 1988 Apr; 200(4):695-708. PubMed ID: 2970552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repression and activation of promoter-bound RNA polymerase activity by Gal repressor.
    Choy HE; Hanger RR; Aki T; Mahoney M; Murakami K; Ishihama A; Adhya S
    J Mol Biol; 1997 Sep; 272(3):293-300. PubMed ID: 9325090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between Escherichia coli RNA polymerase and lambda repressor. Mutations in PRM affect repression of PR.
    Hwang JJ; Gussin GN
    J Mol Biol; 1988 Apr; 200(4):735-9. PubMed ID: 3045326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of RNA polymerase initiation and pausing at the lambda late gene promoter in vivo.
    Kainz M; Roberts JW
    J Mol Biol; 1995 Dec; 254(5):808-14. PubMed ID: 7500352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interference by PR-bound RNA polymerase with PRM function in vitro. Modulation by the bacteriophage lambda cI protein.
    Hershberger PA; Mita BC; Tripatara A; deHaseth PL
    J Biol Chem; 1993 Apr; 268(12):8943-8. PubMed ID: 8473337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.