These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8421698)

  • 1. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus.
    Wang SP; Sharma PL; Schoenlein PV; Ely B
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):630-4. PubMed ID: 8421698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator.
    Hinz AJ; Larson DE; Smith CS; Brun YV
    Mol Microbiol; 2003 Feb; 47(4):929-41. PubMed ID: 12581350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins.
    Viollier PH; Sternheim N; Shapiro L
    EMBO J; 2002 Sep; 21(17):4420-8. PubMed ID: 12198144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of the histidine protein kinase pleC in Caulobacter crescentus motility and chemotaxis.
    Burton GJ; Hecht GB; Newton A
    J Bacteriol; 1997 Sep; 179(18):5849-53. PubMed ID: 9294444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus.
    Hecht GB; Lane T; Ohta N; Sommer JM; Newton A
    EMBO J; 1995 Aug; 14(16):3915-24. PubMed ID: 7664732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus.
    Aldridge P; Paul R; Goymer P; Rainey P; Jenal U
    Mol Microbiol; 2003 Mar; 47(6):1695-708. PubMed ID: 12622822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein sequences and cellular factors required for polar localization of a histidine kinase in Caulobacter crescentus.
    Sciochetti SA; Lane T; Ohta N; Newton A
    J Bacteriol; 2002 Nov; 184(21):6037-49. PubMed ID: 12374838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus.
    Ausmees N; Jacobs-Wagner C
    Annu Rev Microbiol; 2003; 57():225-47. PubMed ID: 14527278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A histidine protein kinase homologue required for regulation of bacterial cell division and differentiation.
    Ohta N; Lane T; Ninfa EG; Sommer JM; Newton A
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10297-301. PubMed ID: 1438215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator.
    Ohta N; Newton A
    J Bacteriol; 2003 Aug; 185(15):4424-31. PubMed ID: 12867451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential localization of two histidine kinases controlling bacterial cell differentiation.
    Wheeler RT; Shapiro L
    Mol Cell; 1999 Nov; 4(5):683-94. PubMed ID: 10619016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins.
    Viollier PH; Sternheim N; Shapiro L
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13831-6. PubMed ID: 12370432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions of the CckA histidine kinase in Caulobacter cell cycle control.
    Jacobs C; Ausmees N; Cordwell SJ; Shapiro L; Laub MT
    Mol Microbiol; 2003 Mar; 47(5):1279-90. PubMed ID: 12603734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential role of a bistable histidine kinase switch in the asymmetric division cycle of Caulobacter crescentus.
    Subramanian K; Paul MR; Tyson JJ
    PLoS Comput Biol; 2013; 9(9):e1003221. PubMed ID: 24068904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter.
    Wu J; Ohta N; Newton A
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1443-8. PubMed ID: 9465034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DivL performs critical cell cycle functions in Caulobacter crescentus independent of kinase activity.
    Reisinger SJ; Huntwork S; Viollier PH; Ryan KR
    J Bacteriol; 2007 Nov; 189(22):8308-20. PubMed ID: 17827294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle.
    Jacobs C; Hung D; Shapiro L
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4095-100. PubMed ID: 11274434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partners in crime: phosphotransfer profiling identifies a multicomponent phosphorelay.
    Ryan KR
    Mol Microbiol; 2006 Jan; 59(2):361-3. PubMed ID: 16390433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus.
    Biondi EG; Skerker JM; Arif M; Prasol MS; Perchuk BS; Laub MT
    Mol Microbiol; 2006 Jan; 59(2):386-401. PubMed ID: 16390437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.