BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 8421783)

  • 1. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper.
    Rabindran SK; Haroun RI; Clos J; Wisniewski J; Wu C
    Science; 1993 Jan; 259(5092):230-4. PubMed ID: 8421783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1.
    Zou J; Guo Y; Guettouche T; Smith DF; Voellmy R
    Cell; 1998 Aug; 94(4):471-80. PubMed ID: 9727490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes.
    Ali A; Bharadwaj S; O'Carroll R; Ovsenek N
    Mol Cell Biol; 1998 Sep; 18(9):4949-60. PubMed ID: 9710578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition.
    Westwood JT; Wu C
    Mol Cell Biol; 1993 Jun; 13(6):3481-6. PubMed ID: 8497263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular chaperones as HSF1-specific transcriptional repressors.
    Shi Y; Mosser DD; Morimoto RI
    Genes Dev; 1998 Mar; 12(5):654-66. PubMed ID: 9499401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.
    Sarge KD; Murphy SP; Morimoto RI
    Mol Cell Biol; 1993 Mar; 13(3):1392-407. PubMed ID: 8441385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atypical heat shock transcription factor HSF5 is critical for male meiotic prophase under non-stress conditions.
    Yoshimura S; Shimada R; Kikuchi K; Kawagoe S; Abe H; Iisaka S; Fujimura S; Yasunaga KI; Usuki S; Tani N; Ohba T; Kondoh E; Saio T; Araki K; Ishiguro KI
    Nat Commun; 2024 Apr; 15(1):3330. PubMed ID: 38684656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress biology: Complexity and multifariousness in health and disease.
    Mayer MP; Blair L; Blatch GL; Borges TJ; Chadli A; Chiosis G; de Thonel A; Dinkova-Kostova A; Ecroyd H; Edkins AL; Eguchi T; Fleshner M; Foley KP; Fragkostefanakis S; Gestwicki J; Goloubinoff P; Heritz JA; Heske CM; Hibshman JD; Joutsen J; Li W; Lynes M; Mendillo ML; Mivechi N; Mokoena F; Okusha Y; Prahlad V; Repasky E; Sannino S; Scalia F; Shalgi R; Sistonen L; Sontag E; van Oosten-Hawle P; Vihervaara A; Wickramaratne A; Wang SXY; Zininga T
    Cell Stress Chaperones; 2024 Feb; 29(1):143-157. PubMed ID: 38311120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Heat Shock Factors in Stress-Induced Transcription: An Update.
    Bunch H; Calderwood SK
    Methods Mol Biol; 2023; 2693():25-38. PubMed ID: 37540424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock transcription factors demonstrate a distinct mode of interaction with mitotic chromosomes.
    Price RM; Budzyński MA; Shen J; Mitchell JE; Kwan JZJ; Teves SS
    Nucleic Acids Res; 2023 Jun; 51(10):5040-5055. PubMed ID: 37114996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteotoxic stress response in atherosclerotic cardiovascular disease: Emerging role of heat shock factor 1.
    Ghai S; Young A; Su KH
    Front Cardiovasc Med; 2023; 10():1155444. PubMed ID: 37077734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-Induced Conformational Transition Mechanism of Heat Shock Factor 1 Investigated by Tryptophan Probe.
    Kawagoe S; Kumashiro M; Mabuchi T; Kumeta H; Ishimori K; Saio T
    Biochemistry; 2022 Dec; 61(24):2897-2908. PubMed ID: 36485006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSF1 and Its Role in Huntington's Disease Pathology.
    Kim H; Gomez-Pastor R
    Adv Exp Med Biol; 2023; 1410():35-95. PubMed ID: 36396925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HSF1 is a driver of leukemia stem cell self-renewal in acute myeloid leukemia.
    Dong Q; Xiu Y; Wang Y; Hodgson C; Borcherding N; Jordan C; Buchanan J; Taylor E; Wagner B; Leidinger M; Holman C; Thiele DJ; O'Brien S; Xue HH; Zhao J; Li Q; Meyerson H; Boyce BF; Zhao C
    Nat Commun; 2022 Oct; 13(1):6107. PubMed ID: 36245043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hijacking Cellular Stress Responses to Promote Lifespan.
    Dutta N; Garcia G; Higuchi-Sanabria R
    Front Aging; 2022; 3():860404. PubMed ID: 35821861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there a role for HSF1 in viral infections?
    Reyes A; Navarro AJ; Diethelm-Varela B; Kalergis AM; González PA
    FEBS Open Bio; 2022 Jun; 12(6):1112-1124. PubMed ID: 35485710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cellular proteostasis in antitumor immunity.
    Mercier R; LaPointe P
    J Biol Chem; 2022 May; 298(5):101930. PubMed ID: 35421375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory Mechanism of Transcription Factor
    Jin J; Liu Y; Liang X; Pei Y; Wan F; Guo J
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328631
    [No Abstract]   [Full Text] [Related]  

  • 19. AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation.
    Lu WC; Omari R; Ray H; Wang J; Williams I; Jacobs C; Hockaden N; Bochman ML; Carpenter RL
    FEBS J; 2022 Jul; 289(13):3876-3893. PubMed ID: 35080342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome Analysis of Insulin Signaling-Associated Transcription Factors in
    Kaushik N; Rastogi S; Verma S; Pandey D; Halder A; Mukhopadhyay A; Kumar N
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.