BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 8422)

  • 1. Characteristics and energy requirements of an alpha-aminoisobutyric acid transport system in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1976 Aug; 127(2):719-30. PubMed ID: 8422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of alpha-aminoisobutyric acid by Streptococcus pyogenes and its derived L-form.
    Reizer J; Panos C
    J Bacteriol; 1982 Jan; 149(1):211-20. PubMed ID: 7033209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.
    Thompson J; Thomas TD
    J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Galactose transport systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of alpha-aminoisobutyric acid transport in a thermophilic microorganism.
    Reizer J; Grossowicz N
    J Bacteriol; 1974 May; 118(2):414-24. PubMed ID: 4828307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis.
    Poolman B; Driessen AJ; Konings WN
    J Bacteriol; 1987 Dec; 169(12):5597-604. PubMed ID: 3119567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH.
    Poolman B; Nijssen RM; Konings WN
    J Bacteriol; 1987 Dec; 169(12):5373-8. PubMed ID: 3119562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific electron donor-energized transport of alpha-aminoisobutyric acid and K+ into intact cells of a marine pseudomonad.
    Thompson J; MacLeod RA
    J Bacteriol; 1974 Mar; 117(3):1055-64. PubMed ID: 4360537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha-aminoisobutyric acid transport in rat soleus muscle and its modification by membrane stabilizers and insulin.
    Cooper GJ; Kohn PG
    J Physiol; 1980 May; 302():89-105. PubMed ID: 6997458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral amino acid transport in astrocytes: characterization of Na+-dependent and Na+-independent components of alpha-aminoisobutyric acid uptake.
    Brookes N
    J Neurochem; 1988 Dec; 51(6):1913-8. PubMed ID: 3053994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reassessment of decreased amino acid accumulation by Ehrlich ascites tumor cells in the presence of metabolic inhibitors.
    Schafer JA
    J Gen Physiol; 1977 Jun; 69(6):681-704. PubMed ID: 561160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and regulation of phosphate transport in Streptococcus pyogenes.
    Reizer J; Saier MH
    J Bacteriol; 1987 Jan; 169(1):297-302. PubMed ID: 3539921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of alpha-aminoisobutyrate into Trypanosoma brucei brucei.
    Coolbear KP; Midgley M
    J Gen Microbiol; 1984 Nov; 130(11):2865-71. PubMed ID: 6527126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J; Saier MH
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of alpha-aminoisobutyric acid transport in rat skeletal muscles.
    Lewis SE; Goldspink DF
    Biochem J; 1984 Jul; 221(1):71-9. PubMed ID: 6466321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on the uptake of alpha-aminoisobutyric acid by normal and immortalized human embryonic kidney cells from proximal tubule.
    Jessen H; Røigaard H; Riahi-Esfahani S; Jacobsen C
    Biochim Biophys Acta; 1994 Mar; 1190(2):279-88. PubMed ID: 8142427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of thiamine transport in anaerobic baker's yeast by iodoacetate, 2,4-dinitrophenol N,N'-dicyclohexylcarbodiimide and fatty acids.
    Iwashima A; Nose Y
    Biochim Biophys Acta; 1975 Aug; 399(2):375-83. PubMed ID: 1100110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of an uptake system for alpha-aminoisobutyric acid in Leishmania tropica promastigotes.
    Lepley PR; Mukkada AJ
    J Protozool; 1983 Feb; 30(1):41-6. PubMed ID: 6864594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-aminoisobutyric acid efflux from the cornea of the toad, Bufo marinus.
    McGahan MC
    J Physiol; 1981 Jun; 315():253-66. PubMed ID: 6796676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of arsenate, phosphate, and aspartate by Sreptococcus faecalis.
    Harold FM; Spitz E
    J Bacteriol; 1975 Apr; 122(1):266-77. PubMed ID: 47322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.