These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 8422349)
1. Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. Eckstein JW; Hastings JW; Ghisla S Biochemistry; 1993 Jan; 32(2):404-11. PubMed ID: 8422349 [TBL] [Abstract][Full Text] [Related]
2. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate. Li H; Ortego BC; Maillard KI; Willson RC; Tu SC Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361 [TBL] [Abstract][Full Text] [Related]
3. Dithionite treatment of flavins: spectral evidence for covalent adduct formation and effect on in vitro bacterial bioluminescence. Mager HI; Tu SC Photochem Photobiol; 1990 Feb; 51(2):223-9. PubMed ID: 2333335 [TBL] [Abstract][Full Text] [Related]
4. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): half-sites reactivity. Nijvipakul S; Ballou DP; Chaiyen P Biochemistry; 2010 Nov; 49(43):9241-8. PubMed ID: 20836540 [TBL] [Abstract][Full Text] [Related]
5. Computational analysis of the oxygen addition at the C4a site of reduced flavin in the bacterial luciferase bioluminescence reaction. Wada N; Sugimoto T; Watanabe H; Tu SC Photochem Photobiol; 1999 Jul; 70(1):116-22. PubMed ID: 10420850 [TBL] [Abstract][Full Text] [Related]
6. Studies on luciferase from Photobacterium phosphoreum. XI. Interaction of 8-substituted FMNH2 with luciferase. Watanabe T; Matsui K; Kasai S; Nakamura T J Biochem; 1978 Dec; 84(6):1441-6. PubMed ID: 738995 [TBL] [Abstract][Full Text] [Related]
7. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase. Lin LY; Szittner R; Friedman R; Meighen EA Biochemistry; 2004 Mar; 43(11):3183-94. PubMed ID: 15023068 [TBL] [Abstract][Full Text] [Related]
8. Bioluminescence emission of bacterial luciferase with 1-deaza-FMN. Evidence for the noninvolvement of N(1)-protonated flavin species as emitters. Kurfürst M; Macheroux P; Ghisla S; Hastings JW Eur J Biochem; 1989 May; 181(2):453-7. PubMed ID: 2714296 [TBL] [Abstract][Full Text] [Related]
9. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction. Watanabe T; Nakamura T J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335 [TBL] [Abstract][Full Text] [Related]
10. Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives. Francisco WA; Abu-Soud HM; Topgi R; Baldwin TO; Raushel FM J Biol Chem; 1996 Jan; 271(1):104-10. PubMed ID: 8550543 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase. Wei CJ; Lei B; Tu SC Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297 [TBL] [Abstract][Full Text] [Related]
12. Revisiting the Origin of Bacterial Bioluminescence: QM/MM Study on Oxygenation Reaction of Reduced Flavin in Protein. Luo Y; Liu YJ Chemphyschem; 2019 Feb; 20(3):405-409. PubMed ID: 30417568 [TBL] [Abstract][Full Text] [Related]
13. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase. Jeffers CE; Tu SC Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase. Vetrova EV; Kudryasheva NS; Visser AJ; van Hoek A Luminescence; 2005; 20(3):205-9. PubMed ID: 15924327 [TBL] [Abstract][Full Text] [Related]
15. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function. Li Z; Meighen EA Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121 [TBL] [Abstract][Full Text] [Related]
16. Bioluminophore and Flavin Mononucleotide Fluorescence Quenching of Bacterial Bioluminescence-A Theoretical Study. Luo Y; Liu YJ Chemistry; 2016 Nov; 22(45):16243-16249. PubMed ID: 27665749 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of bacterial luciferase into poly(N-isopropylacrylamide) film for electrochemical control of a bioluminescence reaction. Kawanami Y; Yamasaki S; Yamada S; Takehara K Anal Sci; 2012; 28(10):1013-5. PubMed ID: 23059999 [TBL] [Abstract][Full Text] [Related]
18. Spectral detection of an intermediate preceding the excited state in the bacterial luciferase reaction. Macheroux P; Ghisla S; Hastings JW Biochemistry; 1993 Dec; 32(51):14183-6. PubMed ID: 8260504 [TBL] [Abstract][Full Text] [Related]
19. QM/MM Modeling of the Flavin Functionalization in the RutA Monooxygenase. Grigorenko B; Domratcheva T; Nemukhin A Molecules; 2023 Mar; 28(5):. PubMed ID: 36903648 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical luminescence with N(5)-ethyl-4a-hydroxy-3-methyl-4a, 5-dihydrolumiflavin. The mechanism of bacterial luciferase. Kaaret TW; Bruice TC Photochem Photobiol; 1990 May; 51(5):629-33. PubMed ID: 2367559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]