These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8422410)

  • 1. Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots.
    Fuhrmann GF; Völker B
    Biochim Biophys Acta; 1993 Jan; 1145(1):180-2. PubMed ID: 8422410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae.
    Coons DM; Boulton RB; Bisson LF
    J Bacteriol; 1995 Jun; 177(11):3251-8. PubMed ID: 7768825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis and simulation of glucose transport in plasma membrane vesicles of glucose-repressed and derepressed Saccharomyces cerevisiae cells.
    Fuhrmann GF; Völker B; Sander S; Potthast M
    Experientia; 1989 Dec; 45(11-12):1018-23. PubMed ID: 2689201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of hexose uptake in Saccharomyces cerevisiae cultivated in continuous culture.
    Meijer MM; Boonstra J; Verkleij AJ; Verrips CT
    Biochim Biophys Acta; 1996 Dec; 1277(3):209-16. PubMed ID: 8982387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different activation energies in glucose uptake in Saccharomyces cerevisiae DFY1 suggest two transport systems.
    Reinhardt C; Völker B; Martin HJ; Kneiseler J; Fuhrmann GF
    Biochim Biophys Acta; 1997 Apr; 1325(1):126-34. PubMed ID: 9106490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of cellular arginine uptake by more than one transporter.
    Nel MJ; Woodiwiss AJ; Candy GP
    J Membr Biol; 2012 Jan; 245(1):1-13. PubMed ID: 22113524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters.
    Bertilsson M; Andersson J; Lidén G
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):369-77. PubMed ID: 17985160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar uptake into brush border vesicles from dog kidney. II. Kinetics.
    Turner RJ; Silverman M
    Biochim Biophys Acta; 1978 Aug; 511(3):470-86. PubMed ID: 687625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Misuse of nonlinear Scatchard plots.
    Zierler K
    Trends Biochem Sci; 1989 Aug; 14(8):314-7. PubMed ID: 2799900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae.
    Sutherland FC; Lages F; Lucas C; Luyten K; Albertyn J; Hohmann S; Prior BA; Kilian SG
    J Bacteriol; 1997 Dec; 179(24):7790-5. PubMed ID: 9401039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters.
    Maier A; Völker B; Boles E; Fuhrmann GF
    FEMS Yeast Res; 2002 Dec; 2(4):539-50. PubMed ID: 12702270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of glucose uptake kinetics in different yeasts.
    Does AL; Bisson LF
    J Bacteriol; 1989 Mar; 171(3):1303-8. PubMed ID: 2646277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspects of glucose uptake in Saccharomyces cerevisiae.
    Gonçalves T; Loureiro-Dias MC
    J Bacteriol; 1994 Mar; 176(5):1511-3. PubMed ID: 8113192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066.
    Postma E; Scheffers WA; van Dijken JP
    Yeast; 1989; 5(3):159-65. PubMed ID: 2660462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar uptake during early ascosporulation in Saccharomyces cerevisiae.
    Ota A
    Microbios; 1983; 38(151):33-41. PubMed ID: 6355777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose.
    Walsh MC; Smits HP; Scholte M; van Dam K
    J Bacteriol; 1994 Feb; 176(4):953-8. PubMed ID: 8106337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-affinity glucose uptake in Saccharomyces cerevisiae is not dependent on the presence of glucose-phosphorylating enzymes.
    Smits HP; Smits GJ; Postma PW; Walsh MC; van Dam K
    Yeast; 1996 Apr; 12(5):439-47. PubMed ID: 8740417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae.
    Busturia A; Lagunas R
    J Gen Microbiol; 1986 Feb; 132(2):379-85. PubMed ID: 3519857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion.
    Gamo FJ; Moreno E; Lagunas R
    Yeast; 1995 Nov; 11(14):1393-8. PubMed ID: 8585322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels.
    Papagianni M; Boonpooh Y; Mattey M; Kristiansen B
    J Ind Microbiol Biotechnol; 2007 Apr; 34(4):301-9. PubMed ID: 17211636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.