BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 8422468)

  • 1. Dependence of the permanent deformation of red blood cell membranes on spectrin dimer-tetramer equilibrium: implication for permanent membrane deformation of irreversibly sickled cells.
    Liu SC; Derick LH; Palek J
    Blood; 1993 Jan; 81(2):522-8. PubMed ID: 8422468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells.
    Lux SE; John KM; Karnovsky MJ
    J Clin Invest; 1976 Oct; 58(4):955-63. PubMed ID: 965498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered spectrin dimer-dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis.
    Liu SC; Palek J; Prchal J; Castleberry RP
    J Clin Invest; 1981 Sep; 68(3):597-605. PubMed ID: 7276161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A posttranslational modification of beta-actin contributes to the slow dissociation of the spectrin-protein 4.1-actin complex of irreversibly sickled cells.
    Shartava A; Monteiro CA; Bencsath FA; Schneider K; Chait BT; Gussio R; Casoria-Scott LA; Shah AK; Heuerman CA; Goodman SR
    J Cell Biol; 1995 Mar; 128(5):805-18. PubMed ID: 7876306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane.
    An X; Lecomte MC; Chasis JA; Mohandas N; Gratzer W
    J Biol Chem; 2002 Aug; 277(35):31796-800. PubMed ID: 12105217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitination of spectrin regulates the erythrocyte spectrin-protein-4.1-actin ternary complex dissociation: implications for the sickle cell membrane skeleton.
    Ghatpande SS; Goodman SR
    Cell Mol Biol (Noisy-le-grand); 2004 Feb; 50(1):67-74. PubMed ID: 15040429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of erythrocyte membrane-skeletal cohesion by the spectrin-membrane linkage.
    Blanc L; Salomao M; Guo X; An X; Gratzer W; Mohandas N
    Biochemistry; 2010 Jun; 49(21):4516-23. PubMed ID: 20433199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-free state of the red blood cell membrane and the deformation of its skeleton.
    Svelc T; Svetina S
    Cell Mol Biol Lett; 2012 Jun; 17(2):217-27. PubMed ID: 22302416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between in vivo generated hemoglobin skeletal protein complex and increased red cell membrane rigidity.
    Fortier N; Snyder LM; Garver F; Kiefer C; McKenney J; Mohandas N
    Blood; 1988 May; 71(5):1427-31. PubMed ID: 3359048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of the oxygenated sickle erythrocyte membrane.
    Drasler WJ; Smith CM; Keller KH
    Biorheology; 1989; 26(5):935-49. PubMed ID: 2620090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte membrane vesicles and irreversibly sickled cells bind protein S.
    Lane PA; O'Connell JL; Marlar RA
    Am J Hematol; 1994 Dec; 47(4):295-300. PubMed ID: 7977302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupling of the spectrin-based skeleton from the lipid bilayer in sickled red cells.
    Liu SC; Derick LH; Zhai S; Palek J
    Science; 1991 Apr; 252(5005):574-6. PubMed ID: 2020854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
    Picart C; Dalhaimer P; Discher DE
    Biophys J; 2000 Dec; 79(6):2987-3000. PubMed ID: 11106606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosslinking of the nearest membrane protein neighbors in ATP depleted, calcium enriched and irreversibly sickled red cells.
    Palek J; Liu SC; Liu PA
    Prog Clin Biol Res; 1978; 20():75-91. PubMed ID: 26062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformability and spectrin properties in three types of elongated red cells.
    Smith JE; Mohandas N; Clark MR; Greenquist AC; Shohet SB
    Am J Hematol; 1980; 8(1):1-13. PubMed ID: 6893106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural organization of skeletal proteins influences lipid translocation across erythrocyte membrane.
    Mohandas N; Rossi M; Bernstein S; Ballas S; Ravindranath Y; Wyatt J; Mentzer W
    J Biol Chem; 1985 Nov; 260(26):14264-8. PubMed ID: 4055777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of the erythrocyte membrane skeletal ultrastructure in hereditary spherocytosis, hereditary elliptocytosis, and pyropoikilocytosis.
    Liu SC; Derick LH; Agre P; Palek J
    Blood; 1990 Jul; 76(1):198-205. PubMed ID: 2364170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemoglobin-spectrin complexes: interference with spectrin tetramer assembly as a mechanism for compartmentalization of band 1 and band 2 complexes.
    Kiefer CR; Trainor JF; McKenney JB; Valeri CR; Snyder LM
    Blood; 1995 Jul; 86(1):366-71. PubMed ID: 7795245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.