These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 8422942)
1. Early induction of Na(+)-dependent uridine uptake in the regenerating rat liver. Ruiz-Montasell B; Martinez-Mas JV; Enrich C; Casado FJ; Felipe A; Pastor-Anglada M FEBS Lett; 1993 Jan; 316(1):85-8. PubMed ID: 8422942 [TBL] [Abstract][Full Text] [Related]
2. Up-regulation of system A activity in the regenerating rat liver. Martínez-Mas JV; Ruiz-Montasell B; Felipe A; Casado J; Pastor-Anglada M FEBS Lett; 1993 Aug; 329(1-2):189-93. PubMed ID: 8354394 [TBL] [Abstract][Full Text] [Related]
3. Nucleoside uptake in rat liver parenchymal cells. Mercader J; Gomez-Angelats M; del Santo B; Casado FJ; Felipe A; Pastor-Anglada M Biochem J; 1996 Aug; 317 ( Pt 3)(Pt 3):835-42. PubMed ID: 8760370 [TBL] [Abstract][Full Text] [Related]
4. Hormonal regulation of concentrative nucleoside transport in liver parenchymal cells. Gomez-Angelats M; del Santo B; Mercader J; Ferrer-Martinez A; Felipe A; Casado J; Pastor-Anglada M Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):915-20. PubMed ID: 8611175 [TBL] [Abstract][Full Text] [Related]
5. Uridine transport in basolateral plasma membrane vesicles from rat liver. Ruiz-Montasell B; Javier Casado F; Felipe A; Pastor-Anglada M J Membr Biol; 1992 Jun; 128(3):227-33. PubMed ID: 1501248 [TBL] [Abstract][Full Text] [Related]
6. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex. Williams TC; Doherty AJ; Griffith DA; Jarvis SM Biochem J; 1989 Nov; 264(1):223-31. PubMed ID: 2604712 [TBL] [Abstract][Full Text] [Related]
7. Evidence that adenine nucleotides modulate nucleoside-transporter function. Characterization of uridine transport in chromaffin cells and plasma membrane vesicles. Delicado EG; Casillas T; Sen RP; Miras-Portugal MT Eur J Biochem; 1994 Oct; 225(1):355-62. PubMed ID: 7925456 [TBL] [Abstract][Full Text] [Related]
8. Na+-glycine cotransport in canalicular liver plasma membrane vesicles. Moseley RH; Ballatori N; Murphy SM Am J Physiol; 1988 Aug; 255(2 Pt 1):G253-9. PubMed ID: 3407780 [TBL] [Abstract][Full Text] [Related]
9. Differentiation of HL-60 cells by dimethylsulfoxide activates a Na(+)-dependent nucleoside transport system. Lee CW; Sokoloski JA; Sartorelli AC; Handschumacher RE In Vivo; 1994; 8(5):795-801. PubMed ID: 7727727 [TBL] [Abstract][Full Text] [Related]
10. Nucleoside transport in brush border membrane vesicles from human kidney. Gutierrez MM; Brett CM; Ott RJ; Hui AC; Giacomini KM Biochim Biophys Acta; 1992 Mar; 1105(1):1-9. PubMed ID: 1567888 [TBL] [Abstract][Full Text] [Related]
11. Coordinate induction of Na(+)-dependent transport systems and Na+,K(+)-ATPase in the liver of obese Zucker rats. Ruiz-Montasell B; Ferrer-Martinez A; Casado FJ; Felipe A; Pastor-Anglada M Biochim Biophys Acta; 1994 Nov; 1196(1):45-50. PubMed ID: 7986809 [TBL] [Abstract][Full Text] [Related]
12. Expression of sodium-dependent purine nucleoside carrier (SPNT) mRNA correlates with nucleoside transport activity in rat liver. Felipe A; Ferrer-Martínez A; Casado FJ; Pastor-Anglada M Biochem Biophys Res Commun; 1997 Apr; 233(2):572-5. PubMed ID: 9144579 [TBL] [Abstract][Full Text] [Related]
13. Characterization of sodium-dependent amino acid transport activity during liver regeneration. Fowler FC; Banks RK; Mailliard ME Hepatology; 1992 Nov; 16(5):1187-94. PubMed ID: 1427657 [TBL] [Abstract][Full Text] [Related]
14. Differential expression and regulation of nucleoside transport systems in rat liver parenchymal and hepatoma cells. del Santo B; Valdés R; Mata J; Felipe A; Casado FJ; Pastor-Anglada M Hepatology; 1998 Dec; 28(6):1504-11. PubMed ID: 9828213 [TBL] [Abstract][Full Text] [Related]
15. Na+- and K+-dependent uridine transport in rat renal brush-border membrane vesicles. Lee CW; Cheeseman CI; Jarvis SM Biochim Biophys Acta; 1988 Jul; 942(1):139-49. PubMed ID: 3382655 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles. Blitzer BL; Bueler RL Am J Physiol; 1985 Jul; 249(1 Pt 1):G120-4. PubMed ID: 4014461 [TBL] [Abstract][Full Text] [Related]
17. Transport mechanisms of nucleosides and the derivative, 6-mercaptopurine riboside across rate intestinal brush-border membranes. Iseki K; Sugawara M; Fujiwara T; Naasani I; Kobayashi M; Miyazaki K Biochim Biophys Acta; 1996 Jan; 1278(1):105-10. PubMed ID: 8611596 [TBL] [Abstract][Full Text] [Related]
18. Sodium-dependent transport of phosphate by rat liver plasma membrane vesicles. Younus MJ; Butterworth PJ Biochim Biophys Acta; 1993 Jul; 1143(2):158-62. PubMed ID: 8318517 [TBL] [Abstract][Full Text] [Related]
19. Vasopressin, insulin and peroxide(s) of vanadate (pervanadate) influence Na+ transport mediated by (Na+, K+)ATPase or Na+/H+ exchanger of rat liver plasma membrane vesicles. Jakubowski J; Jakob A Eur J Biochem; 1990 Oct; 193(2):541-9. PubMed ID: 2171938 [TBL] [Abstract][Full Text] [Related]
20. Sodium-dependent nucleoside transport in the human intestinal brush-border membrane. Patil SD; Unadkat JD Am J Physiol; 1997 Jun; 272(6 Pt 1):G1314-20. PubMed ID: 9227465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]