These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8423143)

  • 1. Initial steps in the anaerobic degradation of 3,4,5-trihydroxybenzoate by Eubacterium oxidoreducens: characterization of mutants and role of 1,2,3,5-tetrahydroxybenzene.
    Haddock JD; Ferry JG
    J Bacteriol; 1993 Feb; 175(3):669-73. PubMed ID: 8423143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate.
    Krumholz LR; Crawford RL; Hemling ME; Bryant MP
    J Bacteriol; 1987 May; 169(5):1886-90. PubMed ID: 3571153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens.
    Krumholz LR; Bryant MP
    J Bacteriol; 1988 Jun; 170(6):2472-9. PubMed ID: 3372475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of gallate in Penicillium simplicissimum.
    Patel TR; Hameed N; Armstrong S
    J Basic Microbiol; 1992; 32(4):233-40. PubMed ID: 1460567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens G-41.
    Haddock JD; Ferry JG
    J Biol Chem; 1989 Mar; 264(8):4423-7. PubMed ID: 2925649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici.
    Brune A; Schink B
    J Bacteriol; 1990 Feb; 172(2):1070-6. PubMed ID: 2298693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the reaction mechanism of pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici.
    Reichenbecher W; Schink B
    Biochim Biophys Acta; 1999 Mar; 1430(2):245-53. PubMed ID: 10082952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic degradation of flavonoids by Eubacterium ramulus.
    Schneider H; Blaut M
    Arch Microbiol; 2000 Jan; 173(1):71-5. PubMed ID: 10648107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6.
    Kasai D; Masai E; Miyauchi K; Katayama Y; Fukuda M
    J Bacteriol; 2005 Aug; 187(15):5067-74. PubMed ID: 16030198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe.
    Freier TA; Beitz DC; Li L; Hartman PA
    Int J Syst Bacteriol; 1994 Jan; 44(1):137-42. PubMed ID: 8123557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bringing up to date the toolkit for the catabolism of aromatic compounds in fungi: The unexpected 1,2,3,5-tetrahydroxybenzene central pathway.
    Martins TM; Bento A; Martins C; Tomé AS; Moreira CJS; Silva Pereira C
    Microb Biotechnol; 2024 Jan; 17(1):e14371. PubMed ID: 38064205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the Hungate anaerobic technique in the isolation of phloroglucinol-negative mutants of Coprococcus species.
    Thompson LA; Gates DM; Ingledew WM; Jones GA
    Appl Environ Microbiol; 1976 Jan; 31(1):21-4. PubMed ID: 782358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transhydroxylase of Pelobacter acidigallici: a molybdoenzyme catalyzing the conversion of pyrogallol to phloroglucinol.
    Reichenbecher W; Brune A; Schink B
    Biochim Biophys Acta; 1994 Feb; 1204(2):217-24. PubMed ID: 8142462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical investigations of polyphenol degradation enzymes in the phototrophic bacterium Rubrivivax gelatinosus.
    Cui M; Wei Y; Tan J; Li T; Jiao X; Zhou Y
    Biochem J; 2023 Nov; 480(21):1753-1766. PubMed ID: 37903000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of a novel O-methyltransferase from Flammulina velutipes that catalyzes methylation of pyrocatechol and pyrogallol structures in polyphenols.
    Kirita M; Tanaka Y; Tagashira M; Kanda T; Maeda-Yamamoto M
    Biosci Biotechnol Biochem; 2015; 79(7):1111-8. PubMed ID: 25754602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocatalytic Properties and Structural Analysis of Phloroglucinol Reductases.
    Conradt D; Hermann B; Gerhardt S; Einsle O; Müller M
    Angew Chem Int Ed Engl; 2016 Dec; 55(50):15531-15534. PubMed ID: 27874239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus.
    Schoefer L; Mohan R; Braune A; Birringer M; Blaut M
    FEMS Microbiol Lett; 2002 Mar; 208(2):197-202. PubMed ID: 11959436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of human fecal bacteria capable of 21-dehydroxylating corticoids.
    Bokkenheuser VD; Winter J; Dehazya P; Kelly WG
    Appl Environ Microbiol; 1977 Nov; 34(5):571-5. PubMed ID: 303887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6.
    Abe T; Masai E; Miyauchi K; Katayama Y; Fukuda M
    J Bacteriol; 2005 Mar; 187(6):2030-7. PubMed ID: 15743951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the 3-O-methylgallate dioxygenase gene and evidence of multiple 3-O-methylgallate catabolic pathways in Sphingomonas paucimobilis SYK-6.
    Kasai D; Masai E; Miyauchi K; Katayama Y; Fukuda M
    J Bacteriol; 2004 Aug; 186(15):4951-9. PubMed ID: 15262932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.