BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 8423151)

  • 1. FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation.
    Arévalo-Rodríguez M; Pan X; Boeke JD; Heitman J
    Eukaryot Cell; 2004 Oct; 3(5):1287-96. PubMed ID: 15470257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Loss-of-Function Mutants in Aspartate Kinase and Homoserine Dehydrogenase Genes Points to Complexity in the Regulation of Aspartate-Derived Amino Acid Contents.
    Clark TJ; Lu Y
    Plant Physiol; 2015 Aug; 168(4):1512-26. PubMed ID: 26063505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of feedback inhibition-insensitive aspartate kinase identified in a threonine-accumulating mutant of
    Isogai S; Nishimura A; Inoue A; Sonohara S; Tsugukuni T; Okada T; Takagi H
    Appl Environ Microbiol; 2024 Apr; 90(4):e0015524. PubMed ID: 38456673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering allosteric inhibition of homoserine dehydrogenase by semi-rational saturation mutagenesis screening.
    Liu X; Liu J; Liu Z; Qiao Q; Ni X; Yang J; Sun G; Li F; Zhou W; Guo X; Chen J; Jia S; Zheng Y; Zheng P; Sun J
    Front Bioeng Biotechnol; 2023; 11():1336215. PubMed ID: 38234301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics-Based Allosteric Prediction Method to Design Key Residues in Threonine Dehydrogenase for Amino-Acid Production.
    Wu M; Sun Y; Zhu M; Zhu L; Lü J; Geng F
    ACS Omega; 2021 Apr; 6(16):10975-10983. PubMed ID: 34056250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressor analyses identify threonine as a modulator of ridA mutant phenotypes in Salmonella enterica.
    Christopherson MR; Lambrecht JA; Downs D; Downs DM
    PLoS One; 2012; 7(8):e43082. PubMed ID: 22900093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production.
    Chen Z; Meyer W; Rappert S; Sun J; Zeng AP
    Appl Environ Microbiol; 2011 Jul; 77(13):4352-60. PubMed ID: 21531824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain.
    Lee JH; Lee DE; Lee BU; Kim HS
    J Bacteriol; 2003 Sep; 185(18):5442-51. PubMed ID: 12949096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional and biochemical regulation of a novel Arabidopsis thaliana bifunctional aspartate kinase-homoserine dehydrogenase gene isolated by functional complementation of a yeast hom6 mutant.
    Rognes SE; Dewaele E; Aas SF; Jacobs M; Frankard V
    Plant Mol Biol; 2003 Jan; 51(2):281-94. PubMed ID: 12602885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of a novel gene family encoding ACT domain repeat proteins in Arabidopsis.
    Hsieh MH; Goodman HM
    Plant Physiol; 2002 Dec; 130(4):1797-806. PubMed ID: 12481063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning of the hom-thrC-thrB cluster from Bacillus sp. ULM1: expression of the thrC gene in Escherichia coli and corynebacteria, and evolutionary relationships of the threonine genes.
    Malumbres M; Mateos LM; Guerrero C; Martín JF
    Folia Microbiol (Praha); 1995; 40(6):595-606. PubMed ID: 8768250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614.
    Madsen SM; Albrechtsen B; Hansen EB; Israelsen H
    J Bacteriol; 1996 Jul; 178(13):3689-94. PubMed ID: 8682767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of the aspartate kinase-homoserine dehydrogenase gene from Arabidopsis thaliana.
    Ghislain M; Frankard V; Vandenbossche D; Matthews BF; Jacobs M
    Plant Mol Biol; 1994 Mar; 24(6):835-51. PubMed ID: 8204822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon.
    Follettie MT; Peoples OP; Agoropoulou C; Sinskey AJ
    J Bacteriol; 1993 Jul; 175(13):4096-103. PubMed ID: 8100567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and expression of the thrC gene of Brevibacterium lactofermentum and characterization of the encoded threonine synthase.
    Malumbres M; Mateos LM; Lumbreras MA; Guerrero C; Martín JF
    Appl Environ Microbiol; 1994 Jul; 60(7):2209-19. PubMed ID: 8074505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide.
    Akatsuka H; Kawai E; Omori K; Shibatani T
    J Bacteriol; 1995 Nov; 177(22):6381-9. PubMed ID: 7592412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence of the Serratia marcescens threonine operon and analysis of the threonine operon mutations which alter feedback inhibition of both aspartokinase I and homoserine dehydrogenase I.
    Omori K; Imai Y; Suzuki S; Komatsubara S
    J Bacteriol; 1993 Feb; 175(3):785-94. PubMed ID: 8423151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of serine 352 in the allosteric response of Serratia marcescens aspartokinase I-homoserine dehydrogenase I analyzed by using site-directed mutagenesis.
    Omori K; Komatsubara S
    J Bacteriol; 1993 Feb; 175(4):959-65. PubMed ID: 8432719
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.