These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8423167)

  • 1. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    J Biomech; 1993 Jan; 26(1):37-49. PubMed ID: 8423167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer simulation of the blood flow at the aortic bifurcation with flexible walls.
    Lou Z; Yang WJ
    J Biomech Eng; 1993 Aug; 115(3):306-15. PubMed ID: 8231147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of flow fields and shear rates in an aortic bifurcation.
    Lee D; Chiu JJ
    Front Med Biol Eng; 1993; 5(1):23-9. PubMed ID: 8323879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 1998 Nov; 31(11):995-1007. PubMed ID: 9880056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 2000 Jun; 33(6):717-28. PubMed ID: 10807993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of non-Newtonian effects within an aorta-iliac bifurcation region.
    Iasiello M; Vafai K; Andreozzi A; Bianco N
    J Biomech; 2017 Nov; 64():153-163. PubMed ID: 29100596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in geometry and shear rate distribution in casts of human aortic bifurcations.
    Mark FF; Bargeron CB; Deters OJ; Friedman MH
    J Biomech; 1989; 22(6-7):577-82. PubMed ID: 2530232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical 3D-stimulation of pulsatile wall shear stress in an arterial T-bifurcation model.
    Perktold K; Peter R
    J Biomed Eng; 1990 Jan; 12(1):2-12. PubMed ID: 2296164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models.
    Razavi A; Shirani E; Sadeghi MR
    J Biomech; 2011 Jul; 44(11):2021-30. PubMed ID: 21696742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of steady generalized Newtonian blood flow in a 2D model of the carotid artery bifurcation.
    Baaijens JP; van Steenhoven AA; Janssen JD
    Biorheology; 1993; 30(1):63-74. PubMed ID: 8374103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D; Chen JY
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of blood flow patterns in human arteries.
    Xu XY; Long Q; Collins MW; Bourne M; Griffith TM
    Proc Inst Mech Eng H; 1999; 213(5):411-21. PubMed ID: 10581968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model.
    Perktold K; Resch M; Florian H
    J Biomech Eng; 1991 Nov; 113(4):464-75. PubMed ID: 1762445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study.
    Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.