BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8423527)

  • 1. Regio- and stereoselective propranolol metabolism by 15 forms of purified cytochromes P-450 from rat liver.
    Fujita S; Umeda S; Funae Y; Imaoka S; Abe H; Ishida R; Adachi T; Masuda M; Kazusaka A; Suzuki T
    J Pharmacol Exp Ther; 1993 Jan; 264(1):226-33. PubMed ID: 8423527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regioselective contribution of the cytochrome P-450 2D subfamily to propranolol metabolism in rat liver microsomes.
    Masubuchi Y; Kagimoto N; Narimatsu S; Fujita S; Suzuki T
    Drug Metab Dispos; 1993; 21(6):1012-6. PubMed ID: 7905378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a dog cytochrome P450 isozyme belonging to the CYP2D subfamily and development of its antipeptide antibody.
    Nakamura A; Yamamoto Y; Tasaki T; Sugimoto C; Masuda M; Kazusaka A; Fujita S
    Drug Metab Dispos; 1995 Nov; 23(11):1268-73. PubMed ID: 8591729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regio- and stereoselectivity in propranolol metabolism by dog liver microsomes and the expressed dog CYP2D15.
    Tasaki T; Iwata H; Kazusaka A; Fujita S
    J Biochem; 1998 Apr; 123(4):747-51. PubMed ID: 9538270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propranolol oxidation by human liver microsomes--the use of cumene hydroperoxide to probe isoenzyme specificity and regio- and stereoselectivity.
    Otton SV; Gillam EM; Lennard MS; Tucker GT; Woods HF
    Br J Clin Pharmacol; 1990 Nov; 30(5):751-60. PubMed ID: 2271375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate stereoselectivity and enantiomer/enantiomer interaction in propranolol metabolism in rat liver microsomes.
    Masubuchi Y; Yamamoto LA; Uesaka M; Fujita S; Narimatsu S; Suzuki T
    Biochem Pharmacol; 1993 Nov; 46(10):1759-65. PubMed ID: 8250961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P4502D isozymes catalyze the 4-hydroxylation of methamphetamine enantiomers.
    Lin LY; Kumagai Y; Hiratsuka A; Narimatsu S; Suzuki T; Funae Y; Distefano EW; Cho AK
    Drug Metab Dispos; 1995 Jun; 23(6):610-4. PubMed ID: 7587941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of (R)- and (S)-propranolol in human and dog liver microsomes. Species differences in stereoselectivity.
    von Bahr C; Hermansson J; Lind M
    J Pharmacol Exp Ther; 1982 Aug; 222(2):458-62. PubMed ID: 7097564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythromycin as a specific substrate for cytochrome P4503A isozymes and identification of a high-affinity erythromycin N-demethylase in adult female rats.
    Zhang XJ; Thomas PE
    Drug Metab Dispos; 1996 Jan; 24(1):23-7. PubMed ID: 8825186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved separation and immunodetection of rat cytochrome P450 4A forms in liver and kidney.
    Okita JR; Johnson SB; Castle PJ; Dezellem SC; Okita RT
    Drug Metab Dispos; 1997 Aug; 25(8):1008-12. PubMed ID: 9280410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the cytochrome P450 (CYP)-mediated metabolic properties of miocamycin: evaluation of the possibility of a metabolic intermediate complex formation with CYP, and identification of the human CYP isoforms.
    Kasahara M; Suzuki H; Komiya I
    Drug Metab Dispos; 2000 Apr; 28(4):409-17. PubMed ID: 10725309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsomal oxidation of N,N-diethylformamide and its effect on P450-dependent monooxygenases in rat liver.
    Amato G; Longo V; Mazzaccaro A; Gervasi PG
    Chem Res Toxicol; 1996; 9(5):882-90. PubMed ID: 8828925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CYP2D-related metabolism in animals of the Canoidea superfamily - species differences.
    Ishizuka M; Lee JJ; Masuda M; Akahori F; Kazusaka A; Fujita S
    Vet Res Commun; 2006 Jul; 30(5):505-12. PubMed ID: 16755362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of microsomal cytochrome P-450s.
    Guengerich FP; Dannan GA; Wright ST; Martin MV; Kaminsky LS
    Xenobiotica; 1982 Nov; 12(11):701-16. PubMed ID: 6762773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human cytochromes P-450.
    Boobis AR; Davies DS
    Xenobiotica; 1984; 14(1-2):151-85. PubMed ID: 6372265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P450 isozymes involved.
    Boberg M; Angerbauer R; Fey P; Kanhai WK; Karl W; Kern A; Ploschke J; Radtke M
    Drug Metab Dispos; 1997 Mar; 25(3):321-31. PubMed ID: 9172950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of CYP4A11 as the major lauric acid omega-hydroxylase in human liver microsomes.
    Powell PK; Wolf I; Lasker JM
    Arch Biochem Biophys; 1996 Nov; 335(1):219-26. PubMed ID: 8914854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P-450-dependent metabolism of lauric acid in alcoholic liver disease: comparison between rat liver and kidney microsomes.
    Amet Y; Lucas D; Zhang-Gouillon ZQ; French SW
    Alcohol Clin Exp Res; 1998 Apr; 22(2):455-62. PubMed ID: 9581653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of propranolol and irreversible binding to rat liver microsomes: strain differences and effects of inhibitors.
    Masubuchi Y; Narimatsu S; Suzuki T
    Biochem Pharmacol; 1992 Feb; 43(3):635-7. PubMed ID: 1540217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imipramine-induced inactivation of a cytochrome P450 2D enzyme in rat liver microsomes: in relation to covalent binding of its reactive intermediate.
    Masubuchi Y; Igarashi S; Suzuki T; Horie T; Narimatsu S
    J Pharmacol Exp Ther; 1996 Nov; 279(2):724-31. PubMed ID: 8930177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.