These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8423791)

  • 61. Mouse p53 represses the rat brain creatine kinase gene but activates the rat muscle creatine kinase gene.
    Zhao J; Schmieg FI; Simmons DT; Molloy GR
    Mol Cell Biol; 1994 Dec; 14(12):8483-92. PubMed ID: 7969181
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nitric oxide regulates smooth-muscle-specific myosin heavy chain gene expression at the transcriptional level-possible role of SRF and YY1 through CArG element.
    Itoh S; Katoh Y; Konishi H; Takaya N; Kimura T; Periasamy M; Yamaguchi H
    J Mol Cell Cardiol; 2001 Jan; 33(1):95-107. PubMed ID: 11133226
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evolutionarily conserved promoter region containing CArG*-like elements is crucial for smooth muscle myosin heavy chain gene expression.
    Zilberman A; Dave V; Miano J; Olson EN; Periasamy M
    Circ Res; 1998 Mar; 82(5):566-75. PubMed ID: 9529161
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Brain and muscle creatine kinase genes contain common TA-rich recognition protein-binding regulatory elements.
    Horlick RA; Hobson GM; Patterson JH; Mitchell MT; Benfield PA
    Mol Cell Biol; 1990 Sep; 10(9):4826-36. PubMed ID: 2388627
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of human B creatine kinase gene regulation in the heart in vitro and in vivo.
    Ritchie ME
    J Biol Chem; 1996 Oct; 271(41):25485-91. PubMed ID: 8810319
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The myosin light chain enhancer and the skeletal actin promoter share a binding site for factors involved in muscle-specific gene expression.
    Ernst H; Walsh K; Harrison CA; Rosenthal N
    Mol Cell Biol; 1991 Jul; 11(7):3735-44. PubMed ID: 2046675
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity.
    Calvo S; Stauffer J; Nakayama M; Buonanno A
    Dev Genet; 1996; 19(2):169-81. PubMed ID: 8900050
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice.
    Grill MA; Bales MA; Fought AN; Rosburg KC; Munger SJ; Antin PB
    Transgenic Res; 2003 Feb; 12(1):33-43. PubMed ID: 12650523
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A muscle-specific enhancer is located at the 3' end of the myosin light-chain 1/3 gene locus.
    Donoghue M; Ernst H; Wentworth B; Nadal-Ginard B; Rosenthal N
    Genes Dev; 1988 Dec; 2(12B):1779-90. PubMed ID: 3240859
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Noninvasive In Vitro Monitoring System Reporting Skeletal Muscle Differentiation.
    Öztürk-Kaloglu D; Hercher D; Heher P; Posa-Markaryan K; Sperger S; Zimmermann A; Wolbank S; Redl H; Hacobian A
    Tissue Eng Part C Methods; 2017 Jan; 23(1):1-11. PubMed ID: 27901409
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha.
    Brandt JM; Djouadi F; Kelly DP
    J Biol Chem; 1998 Sep; 273(37):23786-92. PubMed ID: 9726988
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of functional promoter elements in the rabbit smooth muscle myosin heavy chain gene.
    Katoh Y; Loukianov E; Kopras E; Zilberman A; Periasamy M
    J Biol Chem; 1994 Dec; 269(48):30538-45. PubMed ID: 7982972
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hybrid retroviral vector with MCK enhancers inserted in LTR for stable and specific expression of human factor IX in skeletal muscle.
    Wang JM; Hou J; Qiu XF; Kurachi K; Xue JL
    Chin Med J (Engl); 2004 Jun; 117(6):893-8. PubMed ID: 15198894
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A common factor regulates skeletal and cardiac alpha-actin gene transcription in muscle.
    Muscat GE; Gustafson TA; Kedes L
    Mol Cell Biol; 1988 Oct; 8(10):4120-33. PubMed ID: 3185543
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements.
    Martin KA; Gualberto A; Kolman MF; Lowry J; Walsh K
    DNA Cell Biol; 1997 May; 16(5):653-61. PubMed ID: 9174170
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Gene transfer of connexin43 into skeletal muscle.
    Reinecke H; Minami E; Virag JI; Murry CE
    Hum Gene Ther; 2004 Jul; 15(7):627-36. PubMed ID: 15242523
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Two distinct factor-binding DNA elements in cardiac myosin light chain 2 gene are essential for repression of its expression in skeletal muscle. Isolation of a cDNA clone for repressor protein Nished.
    Dhar M; Mascareno EM; Siddiqui MA
    J Biol Chem; 1997 Jul; 272(29):18490-7. PubMed ID: 9218494
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The CArG promoter sequence is necessary for muscle-specific transcription of the cardiac actin gene in Xenopus embryos.
    Mohun TJ; Taylor MV; Garrett N; Gurdon JB
    EMBO J; 1989 Apr; 8(4):1153-61. PubMed ID: 2743976
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Regulation of the rat muscle glycogen phosphorylase-encoding gene during muscle cell development.
    Froman BE; Herrick KR; Gorin FA
    Gene; 1994 Nov; 149(2):245-52. PubMed ID: 7958997
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differential trans-activation of a muscle-specific enhancer by myogenic helix-loop-helix proteins is separable from DNA binding.
    Chakraborty T; Brennan T; Olson E
    J Biol Chem; 1991 Feb; 266(5):2878-82. PubMed ID: 1847137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.