These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8423875)

  • 1. Central basis of muscle fatigue in chronic fatigue syndrome.
    Kent-Braun JA; Sharma KR; Weiner MW; Massie B; Miller RG
    Neurology; 1993 Jan; 43(1):125-31. PubMed ID: 8423875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of membrane excitation failure in fatigue induced by intermittent submaximal voluntary contraction of the first dorsal interosseous muscle.
    Fujimoto T; Nishizono H
    J Sports Med Phys Fitness; 1993 Jun; 33(2):107-17. PubMed ID: 8412046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue.
    Baker AJ; Kostov KG; Miller RG; Weiner MW
    J Appl Physiol (1985); 1993 May; 74(5):2294-300. PubMed ID: 8335559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticomotor excitability and perception of effort during sustained exercise in the chronic fatigue syndrome.
    Sacco P; Hope PA; Thickbroom GW; Byrnes ML; Mastaglia FL
    Clin Neurophysiol; 1999 Nov; 110(11):1883-91. PubMed ID: 10576483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered central nervous system signal during motor performance in chronic fatigue syndrome.
    Siemionow V; Fang Y; Calabrese L; Sahgal V; Yue GH
    Clin Neurophysiol; 2004 Oct; 115(10):2372-81. PubMed ID: 15351380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diminished central activation during maximal voluntary contraction in chronic fatigue syndrome.
    Schillings ML; Kalkman JS; van der Werf SP; van Engelen BG; Bleijenberg G; Zwarts MJ
    Clin Neurophysiol; 2004 Nov; 115(11):2518-24. PubMed ID: 15465441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle performance, voluntary activation, twitch properties and perceived effort in normal subjects and patients with the chronic fatigue syndrome.
    Lloyd AR; Gandevia SC; Hales JP
    Brain; 1991 Feb; 114 ( Pt 1A)():85-98. PubMed ID: 1998892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of upper limb muscle function in chronic fatigue syndrome with and without fibromyalgia.
    Ickmans K; Meeus M; De Kooning M; Lambrecht L; Nijs J
    Eur J Clin Invest; 2014 Feb; 44(2):153-9. PubMed ID: 24313704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man.
    Löscher WN; Cresswell AG; Thorstensson A
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):271-80. PubMed ID: 9011619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurophysiological assessment of skeletal muscle fatigue in patients with congestive heart failure.
    Minotti JR; Pillay P; Chang L; Wells L; Massie BM
    Circulation; 1992 Sep; 86(3):903-8. PubMed ID: 1516203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plantar flexor muscle weakness and fatigue in spastic cerebral palsy patients.
    Neyroud D; Armand S; De Coulon G; Sarah R Dias Da Silva ; Maffiuletti NA; Kayser B; Place N
    Res Dev Disabil; 2017 Feb; 61():66-76. PubMed ID: 28064025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise performance and fatiguability in patients with chronic fatigue syndrome.
    Gibson H; Carroll N; Clague JE; Edwards RH
    J Neurol Neurosurg Psychiatry; 1993 Sep; 56(9):993-8. PubMed ID: 8410041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise.
    Halley SL; Marshall P; Siegler JC
    Exp Physiol; 2018 Jul; 103(7):976-984. PubMed ID: 29704398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voluntary activation of human quadriceps during and after isokinetic exercise.
    Newham DJ; McCarthy T; Turner J
    J Appl Physiol (1985); 1991 Dec; 71(6):2122-6. PubMed ID: 1778901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age effect on fatigue-induced limb acceleration as a consequence of high-level sustained submaximal contraction.
    Huang CT; Huang CC; Young MS; Hwang IS
    Eur J Appl Physiol; 2007 Aug; 100(6):675-83. PubMed ID: 17440747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorsiflexor Muscle Oxygenation During Low, Moderate and Submaximal Sustained Isometric Contraction.
    Paiziev A; Wolf M; Kerimov F
    Adv Exp Med Biol; 2017; 977():21-26. PubMed ID: 28685423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in motor unit characteristics after eccentric elbow flexor exercise.
    Piitulainen H; Holobar A; Avela J
    Scand J Med Sci Sports; 2012 Jun; 22(3):418-29. PubMed ID: 20973828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in fatigability between the sexes during a sustained submaximal contraction protocol in prepubertal children.
    Christos K; Konstantinos H; Dimitrios P; Eleni B
    J Sports Sci; 2006 Aug; 24(8):817-24. PubMed ID: 16815775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.