These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 8424449)
1. Eosinophils are the major source of transforming growth factor-beta 1 in nodular sclerosing Hodgkin's disease. Kadin M; Butmarc J; Elovic A; Wong D Am J Pathol; 1993 Jan; 142(1):11-6. PubMed ID: 8424449 [TBL] [Abstract][Full Text] [Related]
2. Immunohistochemical evidence of a role for transforming growth factor beta in the pathogenesis of nodular sclerosing Hodgkin's disease. Kadin ME; Agnarsson BA; Ellingsworth LR; Newcom SR Am J Pathol; 1990 Jun; 136(6):1209-14. PubMed ID: 2356855 [TBL] [Abstract][Full Text] [Related]
4. Abundant expression of transforming growth factor-beta 1 and -beta 2 by Hodgkin's Reed-Sternberg cells and by reactive T lymphocytes in Hodgkin's disease. Hsu SM; Lin J; Xie SS; Hsu PL; Rich S Hum Pathol; 1993 Mar; 24(3):249-55. PubMed ID: 7681031 [TBL] [Abstract][Full Text] [Related]
5. Detection of immunoglobulin light chain mRNA in nodular sclerosing Hodgkin's disease by in situ hybridization with biotinylated oligonucleotide probes compared with immunohistochemical staining with poly- and monoclonal antibodies. Lauritzen AF; Pluzek KJ; Kristensen LE; Nielsen HW Histopathology; 1992 Oct; 21(4):353-8. PubMed ID: 1398538 [TBL] [Abstract][Full Text] [Related]
6. High molecular weight transforming growth factor beta is excreted in the urine in active nodular sclerosing Hodgkin's disease. Newcom SR; Tagra KK Cancer Res; 1992 Dec; 52(24):6768-73. PubMed ID: 1458464 [TBL] [Abstract][Full Text] [Related]
7. Expression of T-cell antigens on Reed-Sternberg cells in a subset of patients with nodular sclerosing and mixed cellularity Hodgkin's disease. Kadin ME; Muramoto L; Said J Am J Pathol; 1988 Feb; 130(2):345-53. PubMed ID: 2963547 [TBL] [Abstract][Full Text] [Related]
8. Interleukin-6, but not interleukin-4, is expressed by Reed-Sternberg cells in Hodgkin's disease with or without histologic features of Castleman's disease. Hsu SM; Xie SS; Hsu PL; Waldron JA Am J Pathol; 1992 Jul; 141(1):129-38. PubMed ID: 1632458 [TBL] [Abstract][Full Text] [Related]
9. Macrophage-derived chemokine expression in classical Hodgkin's lymphoma: application of tissue microarrays. Hedvat CV; Jaffe ES; Qin J; Filippa DA; Cordon-Cardo C; Tosato G; Nimer SD; Teruya-Feldstein J Mod Pathol; 2001 Dec; 14(12):1270-6. PubMed ID: 11743050 [TBL] [Abstract][Full Text] [Related]
10. Expression of CCL28 by Reed-Sternberg cells defines a major subtype of classical Hodgkin's disease with frequent infiltration of eosinophils and/or plasma cells. Hanamoto H; Nakayama T; Miyazato H; Takegawa S; Hieshima K; Tatsumi Y; Kanamaru A; Yoshie O Am J Pathol; 2004 Mar; 164(3):997-1006. PubMed ID: 14982853 [TBL] [Abstract][Full Text] [Related]
11. Basic fibroblast growth factor and fibrosis in Hodgkin's disease. Ohshima K; Sugihara M; Suzumiya J; Haraoka S; Kanda M; Shimazaki K; Katoh K; Kumagawa M; Kikuchi M Pathol Res Pract; 1999; 195(3):149-55. PubMed ID: 10220794 [TBL] [Abstract][Full Text] [Related]
12. Eosinophil peroxidase is detectable with a monoclonal antibody in collagen bands of nodular sclerosis Hodgkin's disease. Samoszuk M; Sholly S; Epstein AL Lab Invest; 1987 Apr; 56(4):394-400. PubMed ID: 3550288 [TBL] [Abstract][Full Text] [Related]
13. Interleukin-8 in Hodgkin's disease. Preferential expression by reactive cells and association with neutrophil density. Foss HD; Herbst H; Gottstein S; Demel G; Araujó I; Stein H Am J Pathol; 1996 Apr; 148(4):1229-36. PubMed ID: 8644863 [TBL] [Abstract][Full Text] [Related]
14. L-428 nodular sclerosing Hodgkin's cell secretes a unique transforming growth factor-beta active at physiologic pH. Newcom SR; Kadin ME; Ansari AA; Diehl V J Clin Invest; 1988 Dec; 82(6):1915-21. PubMed ID: 2904450 [TBL] [Abstract][Full Text] [Related]
15. Detection of EBV mRNA in nodular sclerosis type of Hodgkin's disease using in situ hybridization with EBER 1 and EBER 2 probes with regard to the immunophenotype of Reed-Sternberg cells. Jesionek-Kupnicka D; Berger F; Jubin B; Bryon PA; Woźniak L Pol J Pathol; 1995; 46(2):71-5. PubMed ID: 7640949 [TBL] [Abstract][Full Text] [Related]
16. Interactions between tissue fibroblasts in lymph nodes and Hodgkin/Reed-Sternberg cells. Aldinucci D; Lorenzon D; Olivo K; Rapanà B; Gattei V Leuk Lymphoma; 2004 Sep; 45(9):1731-9. PubMed ID: 15223630 [TBL] [Abstract][Full Text] [Related]
17. The patterns of IL2, IFN-gamma, IL4 and IL5 gene expression in Hodgkin's disease and reactive lymph nodes are similar. Serrano D; Ghiotto F; Roncella S; Airoldi I; Cutrona G; Truini M; Burgio VL; Baroni CD; Ferrarini M; Pistoia V Haematologica; 1997; 82(5):542-9. PubMed ID: 9407718 [TBL] [Abstract][Full Text] [Related]
19. High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin's lymphoma. van den Berg A; Visser L; Poppema S Am J Pathol; 1999 Jun; 154(6):1685-91. PubMed ID: 10362793 [TBL] [Abstract][Full Text] [Related]
20. Immunohistochemical detection of Epstein-Barr virus-encoded latent membrane protein in Reed-Sternberg cells and variants of Hodgkin's disease. Pinkus GS; Lones M; Shintaku IP; Said JW Mod Pathol; 1994 May; 7(4):454-61. PubMed ID: 7520586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]