These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8424777)

  • 1. Affinity labelling of the Ca(2+)-activated neutral proteinase (calpain) in intact human platelets.
    Anagli J; Hagmann J; Shaw E
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):93-9. PubMed ID: 8424777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of calpain by peptidyl fluoromethyl ketones.
    Angliker H; Anagli J; Shaw E
    J Med Chem; 1992 Jan; 35(2):216-20. PubMed ID: 1732539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additional peptidyl diazomethyl ketones, including biotinyl derivatives, which affinity-label calpain and related cysteinyl proteinases.
    Wikstrom P; Anagli J; Angliker H; Shaw E
    J Enzyme Inhib; 1992; 6(4):259-69. PubMed ID: 1284963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The affinity-labelling of cathepsin S with peptidyl diazomethyl ketones. Comparison with the inhibition of cathepsin L and calpain.
    Shaw E; Mohanty S; Colic A; Stoka V; Turk V
    FEBS Lett; 1993 Nov; 334(3):340-2. PubMed ID: 8243643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of growth of human TE2 and C-33A cells by the cell-permeant calpain inhibitor benzyloxycarbonyl-Leu-Leu-Tyr diazomethyl ketone.
    Mellgren RL; Shaw E; Mericle MT
    Exp Cell Res; 1994 Nov; 215(1):164-71. PubMed ID: 7957664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the growth of WI-38 fibroblasts by benzyloxycarbonyl-Leu-Leu-Tyr diazomethyl ketone: evidence that cleavage of p53 by a calpain-like protease is necessary for G1 to S-phase transition.
    Zhang W; Lu Q; Xie ZJ; Mellgren RL
    Oncogene; 1997 Jan; 14(3):255-63. PubMed ID: 9018111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biological activity of a series of potent fluoromethyl ketone inhibitors of recombinant human calpain I.
    Chatterjee S; Ator MA; Bozyczko-Coyne D; Josef K; Wells G; Tripathy R; Iqbal M; Bihovsky R; Senadhi SE; Mallya S; O'Kane TM; McKenna BA; Siman R; Mallamo JP
    J Med Chem; 1997 Nov; 40(23):3820-8. PubMed ID: 9371247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a new cell penetrating calpain inhibitor (calpeptin).
    Tsujinaka T; Kajiwara Y; Kambayashi J; Sakon M; Higuchi N; Tanaka T; Mori T
    Biochem Biophys Res Commun; 1988 Jun; 153(3):1201-8. PubMed ID: 2839170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane expression of platelet calpain.
    Schmaier AH; Bradford HN; Lundberg D; Farber A; Colman RW
    Blood; 1990 Mar; 75(6):1273-81. PubMed ID: 2310827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of the mitochondrial permeability transition by protease activity in rats: a mechanism of hepatocyte necrosis.
    Aguilar HI; Botla R; Arora AS; Bronk SF; Gores GJ
    Gastroenterology; 1996 Feb; 110(2):558-66. PubMed ID: 8566604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the role of calpain as a stimulus-response mediator in human platelets using new synthetic inhibitors.
    Anagli J; Hagmann J; Shaw E
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):497-502. PubMed ID: 2006912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane binding and autolytic activation of calpain-I in human platelets.
    Ariyoshi H; Shiba E; Sakon M; Kambayashi J; Kawasaki T; Kang J; Kawashima S; Mori T
    Biochem Int; 1992 Jul; 27(2):335-41. PubMed ID: 1503568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of plasma membrane Ca2+-ATPase in human platelets by calpain.
    Brown CS; Dean WL
    Platelets; 2007 May; 18(3):207-11. PubMed ID: 17497432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of calpain in intact platelets by the thiol protease inhibitor E-64d.
    McGowan EB; Becker E; Detwiler TC
    Biochem Biophys Res Commun; 1989 Jan; 158(2):432-5. PubMed ID: 2537073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pp60src is an endogenous substrate for calpain in human blood platelets.
    Oda A; Druker BJ; Ariyoshi H; Smith M; Salzman EW
    J Biol Chem; 1993 Jun; 268(17):12603-8. PubMed ID: 7685344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of calpain in integrin-mediated signal transduction.
    Inomata M; Hayashi M; Ohno-Iwashita Y; Tsubuki S; Saido TC; Kawashima S
    Arch Biochem Biophys; 1996 Apr; 328(1):129-34. PubMed ID: 8638921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation of human platelet calpain-I.
    Ariyoshi H; Shiba E; Sakon M; Kambayashi J; Yoshida K; Kawashima S; Mori T
    Biochem Mol Biol Int; 1993 May; 30(1):63-72. PubMed ID: 8358337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-activated neutral protease is active in the erythrocyte membrane in its nonautolyzed 80-kDa form.
    Molinari M; Anagli J; Carafoli E
    J Biol Chem; 1994 Nov; 269(45):27992-5. PubMed ID: 7961733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B.
    Crawford C; Mason RW; Wikstrom P; Shaw E
    Biochem J; 1988 Aug; 253(3):751-8. PubMed ID: 2845932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative behaviour of calpain and cathepsin B toward peptidyl acyloxymethyl ketones, sulphonium methyl ketones and other potential inhibitors of cysteine proteinases.
    Pliura DH; Bonaventura BJ; Smith RA; Coles PJ; Krantz A
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):759-62. PubMed ID: 1471990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.