BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 842651)

  • 1. Phospholipid metabolism during renal regeneration after acute tubular necrosis.
    Toback FG; Havener LJ; Dodd RC; Spargo BH
    Am J Physiol; 1977 Feb; 232(2):216-22. PubMed ID: 842651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid-mediated stimulation of renal phospholipid biosynthesis after acute tubular necrosis.
    Toback FG; Teegarden DE; Havener LJ
    Kidney Int; 1979 May; 15(5):542-7. PubMed ID: 480786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of renal phospholipid formation during potassium depletion.
    Toback FG; Havener LJ; Spargo BH
    Am J Physiol; 1977 Sep; 233(3):E212-8. PubMed ID: 910910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid metabolism in the initiation of renal compensatory growth after acute reduction of renal mass.
    Toback FG; Smith PD; Lowenstein LM
    J Clin Invest; 1974 Jul; 54(1):91-7. PubMed ID: 4834884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatidylcholine metabolism during renal growth and regeneration.
    Toback FG
    Am J Physiol; 1984 Mar; 246(3 Pt 2):F249-59. PubMed ID: 6367486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioactivity incorporation into different cerebral phospholipids after oral administration of 14C methyl CDP-choline.
    Agut J; Font E; Sacristán A; Ortiz JA
    Arzneimittelforschung; 1983; 33(7A):1048-50. PubMed ID: 6684464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDP-choline circumvents mercury-induced mitochondrial damage and renal dysfunction.
    Buelna-Chontal M; Franco M; Hernández-Esquivel L; Pavón N; Rodríguez-Zavala JS; Correa F; Jasso R; Pichardo-Ramos G; Santamaría J; González-Pacheco H; Soto V; Díaz-Ruíz JL; Chávez E
    Cell Biol Int; 2017 Dec; 41(12):1356-1366. PubMed ID: 28884894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid administration enhances renal protein metabolism after acute tubular necrosis.
    Toback FG; Dodd RC; Maier ER; Havener LJ
    Nephron; 1983; 33(4):238-43. PubMed ID: 6843754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oral cytidine 5'-diphosphate choline administration to rats increases brain phospholipid levels.
    Agut J; Lopez G-Coviella I; Ortiz JA; Wurtman RJ
    Ann N Y Acad Sci; 1993 Sep; 695():318-20. PubMed ID: 8239304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex difference of mercuric chloride-induced renal tubular necrosis in rats--from the aspect of sex differences in renal mercury concentration and sulfhydryl levels--.
    Muraoka Y; Itoh F
    J Toxicol Sci; 1980 Aug; 5(3):203-14. PubMed ID: 6451713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of potassium loading on choline pathways in renal cells.
    Bean GH; Setayesh MR; Lowenstein LM
    Miner Electrolyte Metab; 1983; 9(2):69-75. PubMed ID: 6843522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zonal changes in renal structure and phospholipid metabolism in potassium-deficient rats.
    Toback FG; Ordónez NG; Bortz SL; Spargo BH
    Lab Invest; 1976 Feb; 34(2):115-24. PubMed ID: 175213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductions in renal mass and the nephropathy induced by mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):366-79. PubMed ID: 9144453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choline turnover in phosphatidylcholine of pancreatic islets. Implications for CDP-choline pathway.
    Hoffman JM; Laychock SG
    Diabetes; 1988 Nov; 37(11):1489-98. PubMed ID: 2846391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Studies on the nephrotoxicity of aminoglycoside antibiotics and protection from these effects. (1). Nephrotoxicity of gentamicin and mercuric chloride].
    Kojima R; Suzuki Y
    Nihon Yakurigaku Zasshi; 1984 Nov; 84(5):453-62. PubMed ID: 6519581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of concomitant mercuric chloride and gentamicin on kidney function and structure in the rat.
    Luft FC; Yum MN; Kleit SA
    J Lab Clin Med; 1977 Mar; 89(3):622-31. PubMed ID: 839119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the increase in renal papillary phospholipid biosynthesis a protective mechanism against injury?
    Setton-Avruj CP; Fernández-Tomé MD; Negri A; Scerbo A; Arrizurieta E; Sterin-Speziale NB
    Kidney Blood Press Res; 1996; 19(1):38-45. PubMed ID: 8818116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercuric chloride-induced renal tubular necrosis in the rat.
    Haagsma BH; Pound AW
    Br J Exp Pathol; 1979 Aug; 60(4):341-52. PubMed ID: 508584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid enhancement of renal regeneration after acute tubular necrosis.
    Toback FG
    Kidney Int; 1977 Sep; 12(3):193-8. PubMed ID: 926610
    [No Abstract]   [Full Text] [Related]  

  • 20. Distribution of epidermal growth factor in the kidneys of rats exposed to amikacin.
    Toubeau G; Nonclercq D; Zanen J; Lambricht P; Tulkens PM; Heuson-Stiennon JA; Laurent G
    Kidney Int; 1991 Oct; 40(4):691-9. PubMed ID: 1745019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.