These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 8427801)
1. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Paster BJ; Russell JB; Yang CM; Chow JM; Woese CR; Tanner R Int J Syst Bacteriol; 1993 Jan; 43(1):107-10. PubMed ID: 8427801 [TBL] [Abstract][Full Text] [Related]
2. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination. Krause DO; Russell JB Appl Environ Microbiol; 1996 Mar; 62(3):815-21. PubMed ID: 8975611 [TBL] [Abstract][Full Text] [Related]
3. Production of indolic compounds by rumen bacteria isolated from grazing ruminants. Attwood G; Li D; Pacheco D; Tavendale M J Appl Microbiol; 2006 Jun; 100(6):1261-71. PubMed ID: 16696673 [TBL] [Abstract][Full Text] [Related]
4. Ammonia-hyperproducing bacteria from New Zealand ruminants. Attwood GT; Klieve AV; Ouwerkerk D; Patel BK Appl Environ Microbiol; 1998 May; 64(5):1796-804. PubMed ID: 9572953 [TBL] [Abstract][Full Text] [Related]
5. Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production. Rychlik JL; Russell JB Appl Environ Microbiol; 2002 Mar; 68(3):1040-6. PubMed ID: 11872448 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria. Nelson KE; Thonney ML; Woolston TK; Zinder SH; Pell AN Appl Environ Microbiol; 1998 Oct; 64(10):3824-30. PubMed ID: 9758806 [TBL] [Abstract][Full Text] [Related]
7. The ability of non-bacteriocin producing Streptococcus bovis strains to bind and transfer bovicin HC5 to other sensitive bacteria. Xavier BM; Russell JB Anaerobe; 2009 Aug; 15(4):168-72. PubMed ID: 19171197 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Gerritsen J; Fuentes S; Grievink W; van Niftrik L; Tindall BJ; Timmerman HM; Rijkers GT; Smidt H Int J Syst Evol Microbiol; 2014 May; 64(Pt 5):1600-1616. PubMed ID: 24480908 [TBL] [Abstract][Full Text] [Related]
9. Peptostreptococcus russellii sp. nov., isolated from a swine-manure storage pit. Whitehead TR; Cotta MA; Falsen E; Moore E; Lawson PA Int J Syst Evol Microbiol; 2011 Aug; 61(Pt 8):1875-1879. PubMed ID: 20833884 [TBL] [Abstract][Full Text] [Related]
10. Clostridium proteoclasticum sp. nov., a novel proteolytic bacterium from the bovine rumen. Attwood GT; Reilly K; Patel BK Int J Syst Bacteriol; 1996 Jul; 46(3):753-8. PubMed ID: 8782685 [TBL] [Abstract][Full Text] [Related]
11. The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Flythe MD Lett Appl Microbiol; 2009 Jun; 48(6):712-7. PubMed ID: 19413813 [TBL] [Abstract][Full Text] [Related]
12. Cellulosilyticum ruminicola gen. nov., sp. nov., isolated from the rumen of yak, and reclassification of Clostridium lentocellum as Cellulosilyticum lentocellum comb. nov. Cai S; Dong X Int J Syst Evol Microbiol; 2010 Apr; 60(Pt 4):845-849. PubMed ID: 19661493 [TBL] [Abstract][Full Text] [Related]
13. 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov. Ezaki T; Li N; Hashimoto Y; Miura H; Yamamoto H Int J Syst Bacteriol; 1994 Jan; 44(1):130-6. PubMed ID: 8123556 [TBL] [Abstract][Full Text] [Related]
14. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Russell JB; Strobel HJ; Chen GJ Appl Environ Microbiol; 1988 Apr; 54(4):872-7. PubMed ID: 3377500 [TBL] [Abstract][Full Text] [Related]
15. Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Breitenstein A; Wiegel J; Haertig C; Weiss N; Andreesen JR; Lechner U Int J Syst Evol Microbiol; 2002 May; 52(Pt 3):801-807. PubMed ID: 12054241 [TBL] [Abstract][Full Text] [Related]
16. Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Spring S; Merkhoffer B; Weiss N; Kroppenstedt RM; Hippe H; Stackebrandt E Int J Syst Evol Microbiol; 2003 Jul; 53(Pt 4):1019-1029. PubMed ID: 12892121 [TBL] [Abstract][Full Text] [Related]
17. Peptostreptococcus canis sp. nov., isolated from subgingival plaque from canine oral cavity. Lawson PA; Johnson CN; Bengtsson L; Charalampakis G; Dahlén G; Moore E; Falsen E Anaerobe; 2012 Dec; 18(6):597-601. PubMed ID: 23131868 [TBL] [Abstract][Full Text] [Related]
18. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Liu C; Finegold SM; Song Y; Lawson PA Int J Syst Evol Microbiol; 2008 Aug; 58(Pt 8):1896-902. PubMed ID: 18676476 [TBL] [Abstract][Full Text] [Related]
19. Clostridium lavalense sp. nov., a glycopeptide-resistant species isolated from human faeces. Domingo MC; Huletsky A; Boissinot M; Hélie MC; Bernal A; Bernard KA; Grayson ML; Picard FJ; Bergeron MG Int J Syst Evol Microbiol; 2009 Mar; 59(Pt 3):498-503. PubMed ID: 19244429 [TBL] [Abstract][Full Text] [Related]